Effects of maltodextrin on Physicochemical and sensory properties and microstructure of low fat ultrafiltred Feta cheese

Document Type : Research Article

Abstract

Demand for low-fat dairy such as low-fat cheeses is increasingly on the rise. Cheese will be impaired with fat loss in physicochemical and sensory properties, but this problem can partially be resolved using the fat replacers. In this study, maltodextrin (DE = 16) was used as a fat replacer in low fat UF cheese. Milky maltodextrin solution 25% (w / w) was  fat replacement in cheese in the levels of 15 and 50% (w / w) and chemical properties (i. e. pH, dry matter, fat, WSN / TN, and NPN / TN), sensory properties and microstructure of cheese were evaluated in storage for 2 months at 8ᵒC, in comparison to full fat UF cheese (control). The results of the statistical analysis of data showed that the interaction of ripening time and type of treatment on pH, dry matter, fat and proteolysis (WSN / TN and NPN / TN %) (P <0.05) was significant. With regarding to sensory properties, overall acceptability of both treatments compared with control sample was confirmed. The highest and lowest overall acceptability was the control sample and 15% fat reduced treatment respectively. The overall acceptability of 50% fat reduced treatment was less than the control sample, but comparable with it. Investigation of scanning electron microscope micrographs showed that reducing fat and increasing maltodextrin decreased density of protein structure in treatments containing maltodextrin. Microstructure of 50% fat reduced treatment and control at the end of 60 days of ripening compared to day 32 had been more open, but 15% fat reduced treatment had been denser. In general, according to sensory results, economic aspects, and in order to protect public health, 50% fat reduced treatment was selected as the best treatment.

Keywords

Main Subjects


[1] Keeton, J.T. (1994). Low-fat meat products—technological problems with processing. Meat Sci., 36, 261-276.
[2] Karaca, O., Guven, M., Yasar, K., Kaya, s., Kahyaoglus, T. (2008). The functional, rheological and sensory characteristics of ice creams with various fat replacers. Soci. Dairy Tech., 62, 93-99.
[3] Hadnadev, M., Hadnadev, T.D., Torbica, A., Dokic, L., Pajin, B., Krstonosic, V. (2011). Rheological properties of maltodextrin based fat – reduced confectionery spread systems. Procedia Food Sci., 1, 62-67.
[4] Romeih, E.A., Michaelidou, A., Biliaderis, C.G., Zerfiridis, G.K. (2002). Low – fat White – brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. Int. Dairy J., 12, 525-540.
[5] Nelson, B.K., Barbano, D.M. (2004). Reduced fat cheddar cheese manufactured using a novel fat removal process. J. Dairy Sci., 87, 841-853.
[6] Michaelidou, A., Katsiari, M.C., Kondyli, E., Voutsinas, L.P., Alichanidis, E. (2003a). Effect of a commercial adjunct culture on proteolysis in low-fat Feta-type cheese. Int. Dairy J., 13, 179-189.
[7] Puđa, P., Đerovski, J., Radulović, Z., Obradović, D. (2008). Effects of probiotics cultures and salt reduction on the characteristics of UF white brined cheeses. In: Proceedings of the 5th IDF Sympo. on cheese ripening. (pp. 85), Bern, Switzerland.
[8] Rashidi, H., Mazaheri-Tehrani, M., Razavi, S.M.A., Ghods-Rohany, M. (2015). Improving Textural and Sensory Characteristics of Low-Fat UF Feta Cheese Made with Fat Replacers. J. Agr. Sci. Tech., 17, 121-132.
[9] Roller, S., Jones, S.A. (1996). Handbook of fat replacers, CRC Press, Inc., New York, pp 16-18.
[10] McMahon, D.J., Alleyne, M.C., Fife, R.L., Oberg, C.J. (1996). Use of Fat eplacers in Low Fat Mozzarella Cheese. J. Dairy Sci., 79, 1911-1921.
[11] Połtorak, A., Wyrwisz, J., Moczkowska, M., Marcinkowska-Lesiak, M., Stelmasiak, A., Ulanicka, U., Zalewska, M., Wierzbicka, A., Sun, D.W. (2015). Correlation between instrumental texture and colour quality attributes with sensory analysis of selected cheeses as affected by fat contents. Int. J. Food Sci. Tech., 50, 999–1008.
[12] Mistry, V.V. (2001). Low fat cheese technology. Int. Dairy J., 11, 413-422.
[13] Kennedy, J.F., Knill, C.J., Taylor, D.W. (1995). Maltodextrins, in: Kearsley, M.W., Dziedzic, S.Z. (Eds.), Handbook of starch hydrolysis products and their derivatives, Springer-Science+Busincss Media, Dordrecht, pp 65-82.
[14] Cho, S.S., Prosky, L. (1999). Application of complex carbohydrates to food product fat mimetics. In: Cho, S.S., Prosky, L., Dreher, M. (Eds.), Complex carbohydrates in foods, Marcel Dekker, New York, pp 411–430.
[15] Schmidt, K., Lundy, A., Reynolds, J., Yee, L.N. (1993). Carbohydrate or Protein Based Fat Mimicker Effects on Ice Milk Properties. J. Food Sci., 58, 761-763.
[16] Domagała, J., Sady, M., Grega, T., Bonczar, G. (2006). Rheological properties and texture of yoghurts when oat-maltodextrin is Used as a Fat Substitute. Int. J. Food Propert., 9, 1-11.
[17] Ahmad, N., Singh, R.R.B., Singh, A.K., Patel, A.A., Patel, G.R. (2008). Effect of maltodextrin addition on moisture sorption properties of khoa. Int. J. Dairy Tech., 61, 403-410.
[18] موسسه استاندارد و تحقیقات صنعتی ایران، (1366). پنیر- اندازه‌گیری مقادیر pH و اسیدیته. شماره 2852.
[19] موسسه استاندارد و تحقیقات صنعتی ایران، (1356). پنیر- اندازه‌گیری درصد رطوبت و ماده خشک. شماره 1753.
[20] فرخنده، ع. (1377) روش‌های آزمایش شیر و فراورده‌های آن. جلد دوم، چاپ چهارم، انتشارات دانشگاه تهران، ص 165.
[21] Kuchroo, C.N., Fox, P.F. (1982). Soluble nitrogen in cheddar cheese. Comparision of extraction procedures. Michwissenchaft, 937, 331-335.
[22] Barcenas, P., Perez-Elortondo, F.J., Albisu, M. (2000). Selection and screening of a descriptive panel for ewe´s milk sensory profiling. J. Sensory Stud., 15, 79–99.
[23] Madadlou, A., Khosroshahi, A., Mousavi. M.E. (2005). Rheology, microstructure and functionality of low-fat Iranian White cheese made with different concentrations of rennet. J. Dairy Sci., 88, 3052–3062.
[24] Volikakis, P., Biliaderis, C.G., Vamvakas, C., Zerfiridis, G.K. (2004). Effects of a commercial oat-b-glucan concentrate on the chemical, physicochemical and sensory attributes of a low-fat white-brined cheese product. Food Res. Int., 37, 83–94.
[25] Rahimi, J., khosrowshahi, A., Madadlou, A., Aziznia, S. (2007). Texture of low fat Iranian white cheese as influenced by gum tragacanth as fat replacer. Americ. Dairy Sci. Assoc., 90, 4058-4070.
[26] Fox, P.F., Guinee, T.P., MCsweeney, P.L.H. (2000). Fundamental of cheese science, Aspen Publisher Inc., Gaithersburg, Maryland, pp 236-278.
[27] Shakeel-ur-Rehman, Waldron, D., Fox, P.F. (2004). Effect of modifying lactose concentration in cheese curd on proteolysis and on quality of Cheddar cheese. Int. Dairy J., 14, 591–597.
[28] Mistry, V.V., Kasperson, K.M. (1998). Influence of salt on the quality of reduced fat Cheddar cheese. J. Dairy Sci., 81, 1214-1221.
[29] Miočinović, J., Puđa, P., Radulović, Z., Pavlović, V., Miloradović, Z., Radovanović, M., Paunović, D. (2011). Development of low fat UF cheese technology. Mljekarstvo, 61, 33-44.
[30] قدوسی، ح.ب.؛ حبیبی نجفی، م.ب.؛ مظاهری تهرانی، م.؛ رضوی، م.ع. (1383) تولید پنیر فتا به روش صنعتی و سنتی (ترجمه). چاپ دوم، انتشارات دانشگاه فردوسی مشهد، مشهد، ص 155.
[31] Colmenero, F.J. (1996). Technologies for developing low-fat meat products. J. Food Sci. Tech., 7: 41-48.
[32] Baldwin, K.A., Baer, R.J., Parsons, J.G., Seas, S.W., Spurgeon R., Torrey, G.S. (1986). Evaluation of yield and quality of cheddar cheese manufactured milk with added whey protein concentrate. J. Dairy sci., 69, 2543-2550.
[33] Aminifar, M., Emam-Djomeh, Z. (2014). Changes of texture, microstructure and free fatty acid contents of  Lighvan cheese during accelerated ripening with lipase. J. Agr. Sci. Tech., 16, 113-123.
[34] Marshal, R.T. (1992). Standard methods for the examination of dairy products, 16th ed., American Public Health Association, Washington D.C., pp 271- 272.
[35] Hesari, J., Ehsani, M.R., Khosroshahi, A., MCsweeney, P.L.H. (2006). Contribution of rennet and starter to proteolysis in Iranian UF white cheese. Lait, 86, 291-302.
[36] Mallato, H., Pappa, E.C., Boumba, V.A. (2004). Proteolysis in Teleme cheese made from ewe’s, goat’s or a mixture of ewe’s and goat’s milk. Int. Dairy J., 14, 977-987.
[37] Sahan, N., Yasar, K., Hayaloglu, A.A., Karaca, O.B., Kaya, A. (2007). Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. J. Dairy Res., 75, 1-7.
[38] Aryana, K.J., Haque, Z.U. (2001). Effect of commercial fat replacers on the microstructure of low-fat cheddar cheese. Int. Food Sci. Tech., 36, 169-177.
[39] Tamime, A.Y., Barrantes, E., Sword, A.M. (1996). The effect of starch based fat substitutes on the microstructure of set-style yogurt made from reconstituted skimmed milk powder. J. Soci. Dairy Tech., 49, 1-10.
[40] Karami, M., Ehsani, M.R., Ebrahimzadeh Mousavi, M., Rezaei, K., Safari, M. (2008). Microstructural Changes in Fat During the Ripening of Iranian Ultrafiltered Feta Cheese. Americ. Dairy Sci. Assoc., 91, 4147–4154.
[41] Sipahioglu, O., Alvarez, V.B., Solano-Lopez, C. (1999). Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics. Int. Dairy J., 9, 783-789.
[42] Oluk, A.C., Guven, M., Hayaloglu, A.A. (2013). Proteolysis texture and microstructure of low-fat Tulum cheese affected by exopolysaccharide producing cultures during ripening. Int. J. Food Sci. Tech., 49, 435–443.