[1] FAO, (2013). Food and Agricultural Organization Statistical Software, URL http://www.faostat3.fao.org.
[2] Britton, M.T., Leslie, C.H., McGranahan, G.H., Dandekar, A.M. (2007). Walnuts. In: Biotechnology in Agriculture and Forestry. Transgenic Crops: Biotechnol. Agtic. Torest, 60, 349-370.
[3] Du, C.J., Sun, D.W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Food Sci Technol, 15, 230-249.
[4] Ghazanfari, A., Irudayaraj, J., Kusalik, A. (1996). Grading pistachio nuts using a neural network approach. Trans ASAE, 39(6), 2319-2324.
[5] Liming, X., Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Comput Electron Agric, 71, 32-39.
[6] Blasco, J., Aleixos, N., Molt, E. (2003). Machine Vision System for Automatic Quality Grading of Fruit. Biosyst Eng, 85 (4), 415–423.
[7] Heinemann, P.H., Hughes, R., Morrow, C.T., Sommer, H.J., Beelman, R.B., Wuest, P.J. (1994). Grading of mushrooms using machine vision system. Trans ASAE, 37 (5), 1671–1677.
[8] Lee, D.J., Schoenberger, R., Archibald, J., McCollum, S. (2008). Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging. J. Food Eng, 86, 388–398.
[9] Al-Ohali, y. (2011). Computer vision based date fruit grading system: Design and implementation. J. King Saud Univ – Comput Inf Sci, 23, 29–36.
[10] Riquelme, M.T., Barreiro, P., Ruiz-Altisent, M., Valero, C. (2008). Olive classification according to external damage using image analysis. J. Food Eng, 87, 371–379.
[11] Diaz, R., Gil, L., Serrano, C., Blasco, M., Molt, E., Blasco, J. (2004). Comparison of three algorithms in the classification of table olives by means of computer vision. J. Food Eng, 61, 101–107.
[12] Anonymous, (2008). Image Processing Toolbox 6, User’s Guide, The Math Works, Inc. 3 Apple Hill Drive Natick, MA.
[13] محمدی قرمزگلی، خ.؛ وصالی، ف.؛ فعله گری، ر.؛ غفاری، ح. (1390) جداسازی پوسته از مغزگردو و دستهبندی براساس رنگ با استفاده از گشتاورهای تغییرناپذیر تصویر، شبکه عصبی مصنوعی و روش آنالیز تشخیص. نشریه پژوهشهای صنایع غذایی، جلد 21، شماره 3، 315-305.
[14] Jiang, L., Zhu, B., Rao, X., Berney, G., Tao, Y. (2006). Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using Gaussian kernel function approach. J. Food Eng, 81(1), 108–117.
[15] Ebrahimi, A., Zareie, A., Fatahi, R., Ghasemi Varnamkhasti, M. (2009). Study on some morphological attributes of walnuts used in mass models. Sci Hortic-Amsterdam, 121(4), 490–494.
[16] افکاری سیاح، ا.ح.؛ فرهادی، ر. (1391) تعیین برخی ویژگیهای فیزیکی مغز گردو (رقم کاغذی) با هدف جداسازی کیفی. نشریه پژوهشهای صنایع غذایی، جلد 22، شماره 1، 17-11.
[17] Al-Malahi, A., Kataoka, T., Okamoto, H., Shibata, Y. (2010). An image processing algorithm for detecting in-line potato tubers without singulation. Comput Electron Agric, 70(1), 239-244.
[18] Gonzales, R.C., Woods, R.E. (1992). Digital Image Processing, 2th ed.,Addison-Wesley Longman Publishing Co, Boston, pp 282-342.
[19] Anonymous, (1997). United States Standards for Grades of Shelled Walnuts (Juglans regia). (Effective September 1, 1968)-reprinted.
[20] Velioglu, H.M., Boyac, I.H., Kurultay, S. (2011). Determination of visual quality of tomato system and artificial neural networks paste using computerized inspection. Comput Electron Agric, 77, 147-154.
[21] Jha, S.N., Chopra S., Kingsly, A.R.P. (2005). Modeling of color values for nondestructive evaluation of maturity of mango. J. Food Eng, 78(1), 22-26.
[22] بی نام، (1372). مغز گردو، موسسه استاندارد و تحقیقات صنعتی ایران، استاندارد شماره 18، چاپ ششم.