Evaluation rheological of Qudomeh shahri a function of concentration and freezing procces and compare it’s with commercial Xanthan gum

Document Type : Research Article


1 PhD. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 M. Sc. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Associate Professor, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran


In this study, the effect of freezing condition (-18oC for 24 h) on rheological characteristic of gudomeh shahri as a local gum in different concentration (0.5, 1, 1.5 and 2 %) was investigated and in final was compared with xanthan gum as a commercial gum. For studing the effect of freezing and concentration on rheological characteristic, we used Brookfield viscometer and power law and Hershel balky model for modeling. Freezing storage of food product is a common way to extend their shelf life. However, the final quality of stored products changes after storage at low temperature that related to this parathion of liquid from foods during storage. These problems can be solved by incorporating an appropriate hydrocolloid. Hydrocolloid by reducing water loss during storage at low temperatures can solve these problems and to maintain texture and rheology food. In order to maintain and improve the texture of food, Hydrocolloids are widely used as the gel agents in food systems, although all Hydrocolloids are not similar behavior in different thermal conditions. The result showed that aprant viscosity with increase concentration of gudomeh shahri and xanthan gums was increased. Evaluation of rheological models showed that in low concentration, the freezing lead to increased consistency index whiles in high concentration the freezing lead to decreased consistency index. With attention R2 and SE in fitting experimental date with Hershel balky model, this model is compatible for modeling.


Main Subjects

[1] Williams, P.A., Phillips, G.O. (2000). Introduction to food hydrocolloids. In: G.O. Phillips, & P. A. Williams (Eds.), Handbook of Hydrocolloids. Cambridge: Wood head Publishing, pp137–154
[2] Glicksman, M. (1982). Gum arabic. In: Glicksman M.(ed.), Food Hydrocolloids, CRC Press, Boca Raton, FL, pp7-30.
 [3] Marcotte, M., Taherian, A.R., Ramaswamy, H.S. (2001). Rheological properties of selected hydrocolloids as function of concentration and temperature. Food Hydrocolloids, 34, 695-703.
[4] امین، غ. (1387) متداول­ترین گیاهان دارویی سنتی ایرانی، چاپ دوم، انتشارات دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، مرکز تحقیقات اخلاق و تاریخ پزشکی، ص 86-34.
[5] رضوی، س.م.ع.؛ بستان، آ.؛ نیک‌نیا، س.؛ رزمخواه، س. (1390) بررسی خواص عملکردی عصاره خام هیدروکلوئیدی برخی دانه‌های بومی ایران، نشریه پژوهش­های صنایع غذایی، 21(3)، ص 389-379.
 [6] Koocheki A., Taherian, A.R., Razavi, S.M.A., Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Leidium perfoliatum seeds. Food Hydrocolloids, 23, 2369-2379.
[7] Imeson, A.P. (2000). Handbook of hydrocolloids. Cambridge: Wood head publishing, pp 156–184.
[8] Barbosa–Cánovas, G.V., Kokini, J.L., Ma.L., Ibraz, A. (1996). The rheology of semiliquid foods. J. Adv. Food Nutr. Res., 39, 1–69.
[9] Razavi, S.M.A., Mohammadi Moghaddam, T., Emadzadeh, B., Salehi, F. (2012). Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 29, 205-210.
[10] Naji, S., Razavi, S.M.A., Karazhiyan, H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids, 28, 75-81.
[11] Li, X., Fang, Y., AlAssaf, S., Phillips, G.O., Nishinari, F., Zhang, H. (2009). Rheological study of gum Arabic solution: Interpretation based on molecular self-association. Food Hydrocolloids, 23, 2394-2402.
[12] Mitschka, P. (1982). Simple conversion of brookfield R.V.T. readings into viscosity functions. J. Rheol. Acta., 21, 207-209.
[13] Song, K.W., Kim, Y.S., Chang, G.S. (2006). Rheology of concentrated xanthan gum solutions: steady shear flow behavior. J. Fiber Polym., 7(2),129-138.
[14] Tada, T., Matsumoto, T., Masuda, T. (1998). Structure of molecular association of curdlan at dilute regime in alkaline aqueous systems. Chem. Phys., 228, 157–166.
[15] Sworn, G. (2000). Xanthan Gum. In: G.O. Phillips, & P. A. Williams (Eds.), Handbook of Hydrocolloids, Cambridge: Wood head Publishing, pp 103-115.
[16] سمائی، س پ.؛ قربانی، م.؛ صادقی ماهونک، ع. ر.؛ حعفری، س. م. (1393) بررسى تاثیر سرعت چرخشى، غلظت و دما بر رفتار جریان محلول صمغ تن هى زردآلو، فصلنامه علوم و فناوری­های نوین غذایی، سال دوم، شماره ٥، ص 48-39.
[17] صالحى، ف.؛ کاشانى نژاد، م. (1392) بررسى اثر روش و شرایط خشک کردن بر روى رئولوژى و بافت صمغ دانه ریحان، علوم و فناوری­هاى نوین غذایى، سال اول، شماره 2، ص 48-39.
 [18] Qian, H.F., Cui, S.W., Wang, Q., Wang, C., Zhou, H.M. (2011). Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocolloids, 25,1285-1290.
[19] Harry-Okuru, R.E., Carriere, C.J., Wing, R.E. (1999). Rheology of modified Lesquerella gum J. Ind Crops Pros., 19: 11-20.
[20] رضایى، ر.؛ خمیرى، م.؛ اعلمى، م. (1390) بررسى خواص رئولوژیکى و حسى ماست حاوى غلظت­هاى مختلف صمغ عربى و صمغ گوار.  پژوهش­هاى علوم و صنایع غذایى ایران، جلد 7، شماره1، ص49-42.
[21] سمواتى، و.؛ امام جمعه، ز.؛ حجتى، م. (1390) بررسی مدل­هاى مختلف رئولوژیک در سوسپانسیون­هاى حاوى صمغ کتیرا.  پژوهش­هاى صنایع غذایى، جلد 22، شماره 1، ص95-87.
[22] فروغى‌نیا، س.؛ عباسى، س. (1385) بررسى ویژگى­هاى رئولوژیکى محلول ثعلب. مجموعه مقالات شانزدهمین کنگره ملى صنایع غذایى ایران، گرگان، ص 11-2.
 [23] Mali, S., Ferrero, C., Redigondu, V., Beleia, A.P., Grossmann, M.V.E., Zaritzky, N. E. (2003). Influence of pH and hydrocolloids addition on yam (Dioscorea alata) starch pastes stability. J. Lebensm.- Wiss. U.- Thechnol,, 36, 475– 481.
[24] Gómez–Díaz, D., Navaza, M.J.( 2003). Rheology of aqueous solutions of food additives: Effect of concentration, temperature and blending. J. Food Eng., 56,387-392.
 [25] Williams, D.P., Sadar, L.N., Lo, Y.M. (2009). Texture stability of hydrogel complex containing curdlan gum over multiple freeze thaw cycles. J. Food Process. Pres., 33, 126–139.
[26] Hegedušic, V., Herceg, Z., Rimac, S.(2000). Rheological properties of carboxymethylcellulose and whey model solutions before and after freezing. Food Technol. Bioetech., 38(1), 19-26.
[27] Hosseini-parvar, S.H., Matia-Merino, L., Goh, K.K.T., Razavi, S.M.A., Mortazavi. (2010). Steady shear flow behavior of gum extracted from Ocimum bacilicum L. seed: Effect of concentration and temperature. J. Food Eng., 101, 236-243.
[28] Steffe, J.F. (1996). Rheological Methods in Food Process Engineering. 2nd ed. Michigan: Freeman Press,45-55.
 [29] Rao, M.A., Keney, J.F. (1975). Flow properties of selected food gums. Can. I. Food Sc. Tech. J., 8, 142-148.