Physicochemical and structural properties assessment of rice bran oil and proteins

Document Type : Review Article

Authors

1 Ph.D. Candidate, Department of Food and Conversion Industries, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

2 Associate Professor, Department of Food and Conversion Industries, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Abstract

Rice (Oryza sativa L.) is a staple grain vital for human nutrition, particularly in Asia. Rice bran, constituting approximately 10% of the outer layer of brown rice, is a by-product of the milling process. It contains 10–16% protein, 12–22% lipids, dietary fiber, and various bioactive compounds, including B vitamins, vitamin E, and gamma-oryzanol, which exhibit notable antioxidant and nutritional properties. The oil extracted from rice bran features a well-balanced fatty acid composition, predominantly comprising 43% oleic acid (monounsaturated), 32% linoleic acid (polyunsaturated), and 15% palmitic acid (saturated). This profile contributes significantly to cardiovascular health improvement and oxidative stress reduction. The saturated to unsaturated fatty acid ratio is approximately 20:80, with minor but important amounts of linolenic acid (~0.8%). Non-saponifiable constituents such as tocopherols, phytosterols, polyphenols, and gamma-oryzanol (approximately 1.76% in enzyme-extracted oil) further enhance the oil’s antioxidant capacity and cholesterol-lowering effects. Rice bran proteins, including albumin, globulin, glutelin, and prolamin, demonstrate digestibility rates exceeding 90% and a protein digestibility-corrected amino acid score (PDCAAS) ranging from 2.0 to 2.5, underscoring their value as a high-quality protein source. Genetic variability among rice varieties leads to differences in the amino acid profile of rice bran. The proportion of essential amino acids relative to total amino acids in various bran fractions ranges from 31.35% to 34.8%, indicating consistent protein quality throughout the bran layers. Despite its rich nutritional composition, rice bran direct consumption in human diets remains limited, with most usage directed toward animal feed, fertilizers, and biofuel production. Nonetheless, due to its balanced amino acid content, beneficial fatty acid profile, and potent antioxidant compounds, rice bran holds considerable potential as a functional ingredient in food, pharmaceutical, and cosmetic industries.

Graphical Abstract

Physicochemical and structural properties assessment of rice bran oil and proteins

Highlights

  • Physicochemical and structural properties of rice bran oil and proteins have been evaluated. 
  • Fatty acid profile of rice bran oil 
  • Amino acid profile of rice bran proteins 
  • Types of proteins present in rice bran have been investigated. 
  • Properties and characteristics of rice bran peptides have been evaluated.

Keywords

Main Subjects


[1] Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol., 64, 1–12. https://doi.org/10.1016/J.TIFS.2017.01.008
[2] Karim, M. D., Abuhena, M., Hossain, M. D., & Billah, M. M. (2024). Assessment and comparison of cooking qualities and physio-chemical properties of seven rice varieties in terms of amylose content. Food Phys., 1, 100014. https://doi.org/10.1016/J.FOODP.2024.100014
[3] Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci., 1324(1), 7–14. https://doi.org/10.1111/NYAS.12540;WGROUP:STRING:PUBLICATION
[4] Tong, C., & Bao, J. (2019). Rice lipids and rice bran oil. Rice: Chem. Technol, 131–168. https://doi.org/10.1016/B978-0-12-811508-4.00005-8
[5] Sha, W., Chen, F., & Mishra, A. K. (2019). Adoption of direct seeded rice, land use and enterprise income: Evidence from Chinese rice producers. Land Use Policy, 83, 564–570. https://doi.org/10.1016/J.LANDUSEPOL.2019.01.039
[6] Chen, Y., Sha, R., Dai, J., Wang, Z., Mao, Y., Fan, F., Huang, J., & Mao, J. (2025). Phytic acid extraction from rice bran with acetic acid: Optimization, antioxidant capacity and mechanism based on cellular metabolomics. LWT, 217. https://doi.org/10.1016/j.lwt.2025.117394
[7] Rivero Meza, S. L., Cañizares, L., Dannenberg, B., Peres, B. B., Rodrigues, L. A., Mardade, C., de Leon, M. A., Gaioso, C. A., Egea, I., & de Oliveira, M. (2024). Sustainable rice bran protein: Composition, extraction, quality properties and applications. Trends Food Sci. Technol, 145, 104355. https://doi.org/10.1016/J.TIFS.2024.104355
[8] Liu, Y. Q., Strappe, P., Zhou, Z. K., & Blanchard, C. (2019). Impact on the nutritional attributes of rice bran following various stabilization procedures. Crit. Rev. Food Sci. Nutr., 59(15), 2458–2466. https://doi.org/10.1080/10408398.2018.1455638
[9] Chinma, C. E., Ilowefah, M., Shammugasamy, B., Ramakrishnan, Y., & Muhammad, K. (2014). Chemical, antioxidant, functional and thermal properties of rice bran proteins after yeast and natural fermentations. Int. J. Food Sci. Technol., 49(10), 2204–2213. https://doi.org/10.1111/IJFS.12533;REQUESTEDJOURNAL:JOURNAL:13652621;WGROUP:STRING:PUBLICATION
[10] Scarabattoli, L., Sangiorgio, S., Romagnuolo, F., Gelati, L., Cavuoto, D., Rabuffetti, M., Morelli, C. F., Lupinelli, S., & Speranza, G. (2023). Use of carbohydrases to promote protein extraction from rice bran and soybean meal: A comparative study. LWT, 184, 115060. https://doi.org/10.1016/J.LWT.2023.115060
[11] Fabian, C., & Ju, Y. H. (2011). A review on rice bran protein: Its properties and extraction methods. Crit. Rev. Food Sci. Nutr, 51(9), 816–827. https://doi.org/10.1080/10408398.2010.482678;PAGE:STRING:ARTICLE/CHAPTER
[12] Hanmoungjai, P., Pyle, D. L., & Niranjan, K. (2001). Enzymatic process for extracting oil and protein from rice bran. JAOCS, 78(8), 817–821. https://doi.org/10.1007/s11746-001-0348-2
[13] Thamnarathip, P., Jangchud, K., Nitisinprasert, S., & Vardhanabhuti, B. (2016). Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. J. Cereal Sci., 69, 329–335. https://doi.org/10.1016/J.JCS.2016.04.011
[14] Zhang, S., Huang, G., Zhang, Y., Lv, X., Wan, K., Liang, J., Feng, Y., Dao, J., Wu, S., Zhang, L., Yang, X., Lian, X., Huang, L., Shao, L., Zhang, J., Qin, S., Tao, D., Crews, T. E., Sacks, E. J., … Hu, F. (2023). Sustained productivity and agronomic potential of perennial rice. Nat. Sustain., 6(1), 28–38. https://doi.org/10.1038/S41893-022-00997-3;SUBJMETA=1143,449,631,706;KWRD=AGRICULTURE,PLANT+SCIENCES
[15] Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W., & Rawdkuen, S. (2018). Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem., 240, 156–164. https://doi.org/10.1016/J.FOODCHEM.2017.07.080
[16] Mwaurah, P. W., Kumar, S., Kumar, N., Attkan, A. K., Panghal, A., Singh, V. K., & Garg, M. K. (2020). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf., 19(1), 3–20. https://doi.org/10.1111/1541-4337.12507
[17] Sorita, G. D., Favaro, S. P., Ambrosi, A., & Di Luccio, M. (2023). Aqueous extraction processing: An innovative and sustainable approach for recovery of unconventional oils. Trends Food Sci. Technol., 133, 99–113. https://doi.org/10.1016/J.TIFS.2023.01.019
[18] FAO Food Price Index remains stable in March. (n.d.). Retrieved April 30, 2025, from https://www.fao.org/newsroom/detail/fao-food-price-index-remain-stable-in-march/en
[19] Punia, S., Kumar, M., Siroha, A. K., & Purewal, S. S. (2021). Rice bran oil: emerging trends in extraction, health benefit, and its industrial application. Rice Sci., 28(3), 217–232. https://doi.org/10.1016/J.RSCI.2021.04.002
[20] Punia, S., Kumar, M., Sandhu, K. S., & Whiteside, W. S. (2021). Rice-bran oil: An emerging source of functional oil. J. Food Process. Preserv., 45(4), e15318. https://doi.org/10.1111/JFPP.15318;WGROUP:STRING:PUBLICATION
[21] Huang, W. W., Wang, W., Li, J. lie, & Li, Z. H. (2013). Study on the preparation process of rice bran oil by the ultrasonic enzymatic extraction. Adv. J. Food Sci. Technol., 5(2), 213–216. https://doi.org/10.19026/ajfst.5.3246
[22] Blakeney, A. B., & Matheson, N. K. (1984). Some properties of the stem and pollen starches of rice. Starch - Stärke, 36(8), 265–269. https://doi.org/10.1002/STAR.19840360803
[23]  Maclean, J. L., Dawe, D. Charles., & Hettel, G. P. (2002). Rice almanac: source book for the most important economic activity on earth. 253.
[24] Hernandez, N., Rodriguez-Alegría, M. E., Gonzalez, F., & Lopez-Munguia, A. (2000). Enzymatic treatment of rice bran to improve processing. JAOCS, 77(2), 177–180. https://doi.org/10.1007/s11746-000-0028-2
[25] Shih, Y. W., Chou, W. C., Lin, Y. M., Huang, D. D., Liu, Z. H., & Huang, H. J. (2004). Changes in protein tyrosine phosphorylation during mannose and senescence induced cell death in rice. Plant Growth Regul., 42(3), 271–282. https://doi.org/10.1023/B:GROW.0000026492.88868.AC/METRICS
[26] Van Hoed, V., Depaemelaere, G., Ayala, J. V., Santiwattana, P., Verhé, R., & De Greyt, W. (2006). Influence of chemical refining on the major and minor components of rice bran oil. JAOCS, 83(4), 315–321. https://doi.org/10.1007/S11746-006-1206-Y/METRICS
[27] Abdul-Hamid, A., Raja Sulaiman, R. R., Osman, A., & Saari, N. (2007). Preliminary study of the chemical composition of rice milling fractions stabilized by microwave heating. J. Food Compos. Anal., 20(7), 627–637. https://doi.org/10.1016/J.JFCA.2007.01.005
[28] Scarabattoli, L., Fanzaga, M., Aiello, G., Boschin, G., Adduzio, L. d’, Morelli, C. F., Rabuffetti, M., Lammi, C., & Speranza, G. (2025). ACE-inhibitory activity and antioxidant properties of a low MW rice bran protein hydrolysate. LWT, 217, 117381. https://doi.org/10.1016/J.LWT.2025.117381
[29] The Vegetable Proteins - Google Books. (n.d.). Retrieved August 22, 2025, from https://www.google.com/books/edition/The_Vegetable_Proteins/7GtbAAAAcAAJ?hl=en&gbpv=0
[30] Andressa, I., Nascimento, G. K. S., Santos, T. M. dos, Benassi, V. M., & Schmiele, M. (n.d.). OSBORNE SOLUBILITY AND ISOELECTRIC POINT OF BROWN RED RICE PROTEINS.
[31] Osborne, T. B. (1919). The vegetable proteins. Pamphlets, Offprints and Reprints. https://digitalcommons.rockefeller.edu/pamphlets-offprints-and-reprints/79
[32] Agboola, S., Ng, D., & Mills, D. (2005). Characterisation and functional properties of Australian rice protein isolates. J. Cereal Sci., 41(3), 283–290. https://doi.org/10.1016/J.JCS.2004.10.007
[33] Bechtel, D. B., & Juliano, B. O. (1980). Formation of protein bodies in the starchy endosperm of rice (Oryza sativa L.): A re-investigation. Ann. Bot., 45(5), 503–509. https://doi.org/10.1093/OXFORDJOURNALS.AOB.A085852
[34] Bechtel, D. B., & Pomeranz, Y. (1978). Ultrastructure of the mature ungerminated rice (oryza sativa) caryopsis. the starchy endosperm. Am. J. Bot., 65(6), 684–691. https://doi.org/10.1002/J.1537-2197.1978.TB06126.X
[35] Furukawa, S., Mizuma, T., Kiyokawa, Y., Masumura, T., Tanaka, K., & Wakai, Y. (2003). Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent antibody. J. Biosci. Bioeng., 96(5), 467–473. https://doi.org/10.1016/S1389-1723(03)70133-9
[36] Aref Rad, M., Katalani, K., & Nemat Zadeh, G. A. (2022). Evaluation of storage seed protein quality in some quantitative and qualitative rice (Oryza sativa L.) cultivars. J. Field Crops Prod., 15(3), 21–39. https://doi.org/10.22069/EJCP.2022.18658.2386
[37] Zhang, Y., Li, D., Diao, Y., Xu, W., Wang, G., Hu, Z., & Hu, C. (2024). Effect of rice bran protein on the foaming properties and foaming characteristics of rice bran protein–sodium caseinate and rice bran protein nanoparticles–sodium caseinate. Foods, 13(15), 2328. https://doi.org/10.3390/FOODS13152328/S1
[38] Khuwijitjaru, P., Panit, N., Shuji, A. Foaming and emulsifying properties of rice bran extracts obtained by subcritical water treatment.  Silpakorn U. Sci. Tech. J., 1(1), 7-12. https://li01.tci-thaijo.org/index.php/sehs/article/view/7108
[39] Rafe, A., Vahedi, E., & Hasan-Sarei, A. G. (2016). Rheology and microstructure of binary mixed gel of rice bran protein–whey: effect of heating rate and whey addition. J. Sci. Food Agric., 96(11), 3890–3896. https://doi.org/10.1002/JSFA.7586
[40] Pang, S., Shao, P., Sun, Q., Pu, C., & Tang, W. (2020). Relationship between the emulsifying properties and formation time of rice bran protein fibrils. LWT, 122, 108985. https://doi.org/10.1016/J.LWT.2019.108985
[41] Chen, S., Elrys, A. S., Zhao, C., Cai, Z., Zhang, J., & Müller, C. (2023). Global patterns and controls of yield and nitrogen use efficiency in rice. Sci. Total Environ., 898, 165484. https://doi.org/10.1016/J.SCITOTENV.2023.165484
[42] Kashiwagi, T. (2021). Effects of rice grain protein QTL, TGP12, on grain composition, yield components, and eating quality with different nitrogen applications. Field Crops Res., 263, 108051. https://doi.org/10.1016/J.FCR.2020.108051
[43] Shi, J., An, G., Weber, A. P. M., & Zhang, D. (2023). Prospects for rice in 2050. Plant Cell Environ., 46(4), 1037–1045. https://doi.org/10.1111/PCE.14565
[44] Li, L., Shi, S., Cheng, B., Zhao, D., Pan, K., Cao, C., & Jiang, Y. (2023). Association between rice protein components and eating quality traits of different rice varieties under different nitrogen levels. J. Cereal Sci., 113, 103760. https://doi.org/10.1016/J.JCS.2023.103760
[45] Ning, H., Liu, Z., Wang, Q., Lin, Z., Chen, S., Li, G., Wang, S., & Ding, Y. (2009). Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J. Cereal Sci., 50(1), 49–55. https://doi.org/10.1016/J.JCS.2009.02.005
[46] Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., Collantes de Terán, L., & Bautista, J. (2006). Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chem., 98(4), 742–748. https://doi.org/10.1016/J.FOODCHEM.2005.07.016
[47] Moongngarm, A., Daomukda, N., & Khumpika, S. (2012). Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. APCBEE Proc., 2, 73–79. https://doi.org/10.1016/J.APCBEE.2012.06.014
[48] Chatha, S. A. S., Anwar, F., Manzoor, M., & Bajwa, J. U. R. (2006). Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas Aceites, 57(3), 328–335. https://doi.org/10.3989/GYA.2006.V57.I3.56
[49] Kurtys, E., Eisel, U. L. M., Hageman, R. J. J., Verkuyl, J. M., Broersen, L. M., Dierckx, R. A. J. O., & de Vries, E. F. J. (2018). Anti-inflammatory effects of rice bran components. Nutr. Rev., 76(5), 372–379. https://doi.org/10.1093/NUTRIT/NUY011
[50] Umeyama, L., Kasahara, S., Sugawara, M., Yokoyama, S., Saiki, I., & Hayakawa, Y. (2021). Anti-inflammatory effect of fermented brown rice and rice bran with Aspergillus oryzae on mice. Tradit. Kampo Med, 8(1), 60–65. https://doi.org/10.1002/TKM2.1270
[51] Yu, Y., Zhang, J., Wang, J., & Sun, B. (2019). The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv., 9(31), 18060–18069. https://doi.org/10.1039/C9RA02439E
[52] Norazalina, S., Norhaizan, M. E., Hairuszah, I., & Norashareena, M. S. (2010). Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Exp. Toxicol. Pathol., 62(3), 259–268. https://doi.org/10.1016/J.ETP.2009.04.002
[53] Saji, N., Francis, N., Schwarz, L. J., Blanchard, C. L., & Santhakumar, A. B. (2019). Rice bran derived bioactive compounds modulate risk factors of cardiovascular disease and type 2 diabetes mellitus: An updated review. Nutrients, 11(11), 2736. https://doi.org/10.3390/NU11112736
[54] Al-Okbi, S. Y., Mohamed, D. A., Hamed, T. E., & Al-Siedy, E. S. K. (2019). Rice bran as source of nutraceuticals for management of cardiovascular diseases, cardio-renal syndrome and hepatic cancer. J. Herbmed Pharmacol., 9(1), 68–74. https://doi.org/10.15171/JHP.2020.10
[55] Wang, J., Shimada, M., Kato, Y., Kusada, M., & Nagaoka, S. (2015). Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins. Biosci. Biotechnol. Biochem., 79(3), 456–461. https://doi.org/10.1080/09168451.2014.978260
[56] Zhang, H., Wang, J., Liu, Y., Gong, L., & Sun, B. (2016). Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets. Food Funct., 7(6), 2747–2753. https://doi.org/10.1039/C6FO00044D
[57] Xiang, L., Qiu, Z., Zhao, R., Zheng, Z., & Qiao, X. (2023). Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit. Rev. Food Sci. Nutr., 63(10), 1437–1463. https://doi.org/10.1080/10408398.2021.1964433
[58] Priyadarshini, A., Rajauria, G., O’Donnell, C. P., & Tiwari, B. K. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Crit. Rev. Food Sci. Nutr., 59(19), 3082–3101. https://doi.org/10.1080/10408398.2018.1483890
[59] Liu, Z. H., Cheng, F. M., Cheng, W. D., & Zhang, G. P. (2005). Positional variations in phytic acid and protein content within a panicle of japonica rice. J. Cereal Sci., 41(3), 297–303. https://doi.org/10.1016/J.JCS.2004.09.010
[60] Phongthai, S., Journal, W. H.-… F. R., & 2017, undefined. (2017). Preparation, properties and application of rice bran protein: A review. Int. Food Res. J., 24(1), 25–34. http://ifrj.upm.edu.my/24%20(01)%202017/(2).pdf
[61] Taha, F., Mourad, R. M., Mohamed, S. S., & Hashem, A. (2012). Enzyme Treatment Rice Bran. Am. J. Food Technol., 7(8), 452-469. DOI: 10.3923/ajft.2012.452.469
[62] Damayanti, A., Triwibowo, B., & Ekanuramanta, A. T. (2023). Optimization of the aqueous enzymatic extraction (AEE) of rice bran oil with cellulase using response surface methodology. J. Bahan Alam Terbarukan, 12(1), 87–96. DOI: 10.15294/jbat.v12i1.42137
[63] Lloyd, B. J., Siebenmorgen, T. J., & Beers, K. W. (2000). Effects of commercial processing on antioxidants in rice bran. Cereal Chem., 77(5), 551–555. https://doi.org/10.1094/CCHEM.2000.77.5.551;WGROUP:STRING:PUBLICATION
[64] Patel, M., Patel, M., & Naik, S. N. (2004). Gamma-Oryzanol from rice bran oil-A review. J. Sci. Ind. Res., 63. https://www.researchgate.net/publication/239785419
[65] Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci., (6), 12871–12890. https://doi.org/10.3390/IJMS160612871
[66] Gopala Krishna, A. G., Hemakumar, K. H., & Khatoon, S. (2006). Study on the composition of rice bran oil and its higher free fatty acids value. JAOCS, 83(2), 117–120. https://doi.org/10.1007/S11746-006-1183-1/METRICS
[67] Irakli, M., Kleisiaris, F., Kadoglidou, K., & Katsantonis, D. (2018). Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects. Foods, 93, 7(6), 93. https://doi.org/10.3390/FOODS7060093
[68] Wanyo, P., Meeso, N., & Siriamornpun, S. (2014). Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem., 157, 457–463. https://doi.org/10.1016/J.FOODCHEM.2014.02.061
[69] Zheng, L., San, Y., Xing, Y., & Regenstein, J. M. (2024). Rice proteins: A review of their extraction, modification techniques and applications. Int. J. Biol. Macromol., 268, 131705. https://doi.org/10.1016/J.IJBIOMAC.2024.131705
[70] Schlemmer, U., Frølich, W., Prieto, R. M., & Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res., 53(S2), S330–S375. https://doi.org/10.1002/MNFR.200900099
[71] Hurrell, R. F. (2013). Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res, 74(6), 445–452. https://doi.org/10.1024/0300-9831.74.6.445
[72] Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. J. Food Compos. Anal.,24(7), 1057–1063. https://doi.org/10.1016/J.JFCA.2010.12.014
[73] Kumar, A., Sahu, C., Panda, P. A., Biswal, M., Sah, R. P., Lal, M. K., Baig, M. J., Swain, P., Behera, L., Chattopadhyay, K., & Sharma, S. (2020). Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.). J. Sci. Food Agric., 100(4), 1598–1607. https://doi.org/10.1002/JSFA.10168
[74] Liu, Z., Cheng, F., & Zhang, G. (2005). Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chem., 89(1), 49–52. https://doi.org/10.1016/J.FOODCHEM.2004.01.081
[75] Zheng, L., Zhu, X. Y., Wang, J., & Su, W. (2023). Mechanochemical-assisted extraction and enzymatic hydrolysis of calcium phytate from defatted rice bran. Chem. Biol. Technol. Agric., 10(1), 1–12. https://doi.org/10.1186/S40538-023-00424-5/TABLES/9
[76] Hassan, H. M., Abdel-Halim, N. H. M., El-Shenbaby, I., Helmy, M. A., Hammad, M. O., Habotta, O. A., El Nashar, E. M., Alghamdi, M. A., Aldahhan, R. A., Al-Khater, K. M., Almohaywi, B., & Farrag, E. A. E. (2024). Phytic acid attenuates acetaminophen-induced hepatotoxicity via modulating iron-mediated oxidative stress and SIRT-1 expression in mice. Front. Pharmacol., 15, 1384834. https://doi.org/10.3389/FPHAR.2024.1384834/BIBTEX
[77] Barahuie, F., Dorniani, D., Saifullah, B., Gothai, S., Hussein, M. Z., Pandurangan, A. K., Arulselvan, P., & Norhaizan, M. E. (2017). Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomed., 12, 2361–2372. https://doi.org/10.2147/IJN.S126245
[78] Masunaga, T., Murao, N., Tateishi, H., Koga, R., Ohsugi, T., Otsuka, M., & Fujita, M. (2019). Anti-cancer activity of the cell membrane-permeable phytic acid prodrug. Bioorg. Chem., 92, 103240. https://doi.org/10.1016/J.BIOORG.2019.103240
[79] Al-Fatlawi, A. A., Al-Fatlawi, A. A., Irshad, M., Zafaryab, M., Moshahid Alam Rizvi, M., & Ahmad, A. (2014). Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 15(8), 3731–3736. https://doi.org/10.7314/APJCP.2014.15.8.3731
[80] Abdulwaliyu, I., Arekemase, S. O., Adudu, J. A., Batari, M. L., Egbule, M. N., & Okoduwa, S. I. R. (2019). Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clin. Nutr. Exp., 28, 42–61. https://doi.org/10.1016/J.YCLNEX.2019.10.002
[81] VS Vallabha, V., Indira, T. N., Jyothi Lakshmi, A., Radha, C., & Tiku, P. K. (2015). Enzymatic process of rice bran: a stabilized functional food with nutraceuticals and nutrients. J. Food Sci. Technol, 52(12), 8252–8259. https://doi.org/10.1007/s13197-015-1926-9
[82] Beaulieu, J. C., Chen, M. H., Wenefrida, I., Ne¸se, N., & Tuncel, Y. (2023). Stabilization of rice bran: A review. Foods, 12(9), 1924. https://doi.org/10.3390/FOODS12091924
[83] Bansal, S., Sundararajan, S., Shekhawat, P. K., Singh, S., Soni, P., Tripathy, M. K., & Ram, H. (2023). Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. Physiol. Mol. Biol. Plants, 29(7), 985–1003. https://doi.org/10.1007/S12298-023-01343-3
[84] Santa María, C., Revilla, E., Rodríguez-Morgado, B., Castaño, A., Carbonero, P., Gordillo, B., Cert, R., & Parrado, J. (2016). Effect of rice parboiling on the functional properties of an enzymatic extract from rice bran. J. Cereal Sci., 72, 54–59. https://doi.org/10.1016/J.JCS.2016.09.010
[85] Selvaraju, G. D., S., D., S., K., K., D., T., H., & D., R. J. (2022). A study on characterization of pectinase assisted aqueous extraction of rice bran oil. J. Adv. Sci. Res, 13(01), 162–166. https://doi.org/10.55218/jasr.202213117
[86] Garba, U., & Singanusong, R. (2017). Extraction and utilization of rice bran oil: A review. In: Proceedings of the 4th Intel. Con. on Rice Bran Oil (ICRBO 2017): Rice bran oil application: pharma-cosmetics, nutraceuticals and foods (Bangkok, Thailand). https://www.researchgate.net/publication/319354031
[87] Jiang, Y. (2019). Bioprocessing technology of rice bran oil. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812828-2.00004-4
[88] Yoshida, H., Kuriyama, I., Tomiyama-Sakamoto, Y., & Mizushina, Y. (2012). Profiles of lipid components, fatty acids and triacylglycerol molecular species in lipids of rice bran cultivars. Food Sci. Technol. Res, 18(2), 219–226. https://doi.org/10.3136/FSTR.18.219
[89] Hosseini Bahri, S. M., Esmaeilzadeh Kenari, R., & Raftani Amiri, Z. (2023). The effect of extrusion process on quality characteristics of rice bran oil from tarom and Khazar varieties. Food Ind. Eng. Res, 22(2), 111–130. https://doi.org/10.22092/FOODER.2024.363337.1373
[90] Xu, D., Hao, J., Wang, Z., Yang, H., Gao, Q., Ma, N., Wang, J., & Ma, Y. (2020). Aqueous enzymatic extraction of oil from rice bran and its quality evaluation. Authorea Preprints, 1–11.
[91] Kamyab, S., Ghavami, M., Gharachorlu, M., & Larijani, K. (2011). Evaluation of methods for the separation of gamma-oryzanol from Iranian rice bran oil varieties. Q. J. Food Sci. Technol., 8(31), 95–105. https://sid.ir/paper/72543/fa
[92] Lerma-García, M. J., Herrero-Martínez, J. M., Simó-Alfonso, E. F., Mendonça, C. R. B., & Ramis-Ramos, G. (2009). Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem., 115(2), 389–404. https://doi.org/10.1016/J.FOODCHEM.2009.01.063
[93] Fraterrigo Garofalo, S., Tommasi, T., & Fino, D. (2021). A short review of green extraction technologies for rice bran oil. Biomass Convers. Biorefin, 11(2), 569–587. https://doi.org/10.1007/S13399-020-00846-3/FIGURES/2
[94] Hanmoungjai, P., Pyle, L., & Niranjan, K. (2000). Extraction of rice bran oil using aqueous media. J. Chem. Technol. Biotechnol, 75(5), 348–352. https://doi.org/10.1002/(SICI)1097-4660(200005)75:5<348:AID-JCTB233>3.0.CO;2-P
[95] Galanakis, C. M. (2012). Recoveryof high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol, 26(2), 68–87. https://doi.org/10.1016/J.TIFS.2012.03.003
[96] Chaisuwan, B., & Supawong, S. (2022). Physicochemical and antioxidative characteristics of rice bran protein extracted using subcritical water as a pretreatment and stability in a functional drink model during storage. Biocatal. Agric. Biotechnol, 44, 102466. https://doi.org/10.1016/J.BCAB.2022.102466
[97] Yilmaz, N. (2016). Middle infrared stabilization of individual rice bran milling fractions. Food Chem., 190, 179–185. https://doi.org/10.1016/J.FOODCHEM.2015.05.094
[98] Sharma, A., Khare, S. K., & Gupta, M. N. (2001). Enzyme-assisted aqueous extraction of rice bran oil. J. Am. Oil Chem. Soc, 78(9), 949–951. https://doi.org/10.1007/S11746-001-0369-X
[99] Mourad, R. M., Mohamed, S. S., Hashim, A. E., & Taha, F. S. (2009). STABILIZATION AND ENZYMATIC TREATMENT OF RICE BRAN TO IMPROVE OIL YIELD. J. Agric. Chem. Biotechnol, 34(5), 4223–4236. https://doi.org/10.21608/JACB.2009.93096
[100] Vovk, H., Karnpakdee, K., Ludwig, R., & Nosenko, T. (2023). Enzymatic pretreatment of plant cells for oil extraction. Food Technol. Biotechnol., 61(2), 160–178. https://doi.org/10.17113/FTB.61.02.23.7896
[101] R, T., Ata-ur-Rehman, & Butt, M. A. (2007). Characterization of rice bran oil. J. Agric. Res (JAR), 45(3), 225–230. https://doi.org/10.58475/88108646
[102] Riceland Foods: Innovative Cooperative in the International Market - J. David Morrissy - Google Books. (n.d.). Retrieved June 21, 2025, from https://books.google.es/books?hl=en&lr=&id=LsY1OH70skUC&oi=fnd&pg=PA3&dq=Riceland+Foods+rice&ots=jXAhsixSDW&sig=7fG6RzueouhRIxARhlThzTMwiXk&redir_esc=y#v=onepage&q=Riceland%20Foods%20rice&f=false
[103] Wongwaiwech, D., Weerawatanakorn, M., Tharatha, S., & Ho, C. T. (2019). Comparative study on amount of nutraceuticals in by-products from solvent and cold pressing methods of rice bran oil processing. J. Food Drug Anal, 27(1), 71–82. https://doi.org/10.1016/J.JFDA.2018.06.006
[104] Zaky, A. A., Abd El-Aty, A. M., Ma, A., & Jia, Y. (2022). An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Crit. Rev. Food Sci. Nutr, 62(5), 1350–1362. DOI: 10.1080/10408398.2020.1842324
[105] Andriani, R., Subroto, T., Ishmayana, S., & Kurnia, D. (2022). Enhancement Methods of Antioxidant Capacity in Rice Bran: A Review. Foods, 11(19), 2994. https://doi.org/10.3390/FOODS11192994
[106] Nurrohima, D., Nurrohima, D., Wasita, B., & Susilawati, T. N. (2022). Antidiabetic Effects of Red Rice Bran in The Rat Models of Diabetes. J. Aisyah J. Ilmu Kesehat, 7(2), 437–444. https://doi.org/10.30604/jika.v7i2.984
[107] Pansiri, S., Trigueros, E., Gomes, N. G. M., Andrade, P. B., Duangsrisai, S., & Oliveira, A. P. (2024). Cell-free and cell-based antidiabetic effects and chemical characterization of rice bran from Thai cultivars. Food Res. Int, 196, 115023. https://doi.org/10.1016/J.FOODRES.2024.115023
[108] Sasaki, D., Suzuki, H., Kusamori, K., Itakura, S., Todo, H., & Nishikawa, M. (2024). Development of rice bran-derived nanoparticles with excellent anti-cancer activity and their application for peritoneal dissemination. J. Nanobiotechnol, 22(1), 1–16. https://doi.org/10.1186/S12951-024-02381-Z/METRICS
[109] Faizah, F., & Paramadini, A. W. (2023). Enhancement of antioxidant and colon anticancer activity from fermented rice bran extract. J. Edu Health, 14(03), 1202–1208. https://doi.org/10.54209/JURNALEDUHEALTH.V14I3.2597
[110] Sapna, I., & Jayadeep, A. (2022). Cellulolytic and xylanolytic enzyme combinations in the hydrolysis of red rice bran: A disparity in the release of nutraceuticals and its correlation with bioactivities. LWT, 154, 112856. https://doi.org/10.1016/J.LWT.2021.112856
[111] Cho, Y.-C., Baek, M.-K., Park, H.-S., Cho, J.-H., Ahn, E.-K., Suh, J.-P., Jeung, J.-U., Lee, J.-H., Won, Y.-J., Song, Y.-C., Jeong, E.-G., Kim, B.-K., & Lee, J.-H. (2020). History and results of rice breeding in Korea. Korean J. Breed. Sci, 52(0), 58–72. https://doi.org/10.9787/KJBS.2020.52.S.58
[112] Zhang, H. J., Zhang, H., Wang, L., & Guo, X. N. (2012). Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Res. Int, 47(2), 359–363. https://doi.org/10.1016/J.FOODRES.2011.08.014
[113] Ienvenido, B., & Juliano, O. (2003). An adventure in rice chemistry and quality: The Japan connection. J. Appl. Glycosci., 50(Special), 73–76. https://doi.org/10.5458/JAG.50.SPECIAL_73
[114] Vaštag, Ž., Popović, L., Popović, S., Krimer, V., & Peričin, D. (2011). Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chem., 124(4), 1316–1321. https://doi.org/10.1016/J.FOODCHEM.2010.07.062
[115] Sapwarobol, S., Saphyakhajorn, W., & Astina, J. (2021). Biological functions and activities of rice bran as a functional ingredient: A review. Nutr. Metab. Insights, 14. https://doi.org/10.1177/11786388211058559
[116] Torabizadeh, H., Abbasi, S., & Tafaghodinia, B. (2025). Multi-immobilization of viscozyme, alcalase and flavourzyme by nanomagnetic combi-CLEAs method for oil and protein hydrolysates extraction from rice bran in aqueous phase. Int. J. Biol. Macromol., 311, 143719. https://doi.org/10.1016/J.IJBIOMAC.2025.143719
[117] Protein Bank Data. (n.d.). WWW.Uniprot.Org.
[118] Sitanggang, A. B., Putri, J. E., Palupi, N. S., Hatzakis, E., Syamsir, E., & Budijanto, S. (2021). Enzymatic preparation of bioactive peptides exhibiting ACE inhibitory activity from soybean and velvet bean: A systematic review. Molecules, 26(13), 3822. https://doi.org/10.3390/MOLECULES26133822
[119] Orio, L. P., Boschin, G., Recca, T., Morelli, C. F., Ragona, L., Francescato, P., Arnoldi, A., & Speranza, G. (2017). New ACE-inhibitory peptides from hemp seed (Cannabis sativa L.) proteins. J. Agric. Food Chem, 65(48), 10482–10488. https://doi.org/10.1021/ACS.JAFC.7B04522/SUPPL_FILE/JF7B04522_SI_001.PDF
[120] Han, S. W., Chee, K. M., & Cho, S. J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem, 172, 766–769. https://doi.org/10.1016/J.FOODCHEM.2014.09.127
[121] Devi Ph Scholar, R. D., Lakshmi Veliveli Professor, V., Devi Ph scholar, R. D., Devi, R., Lakshmi Veliveli, V., & Suchiritha Devi, S. (2021). Nutritional composition of rice bran and its potentials in the development of nutraceuticals rich products. J. Pharmacogn. Phytochem., 10(2), 470–473. www.phytojournal.com
[122] Yu, C. wei, Luo, T., Xie, T., Li, J., & Deng, Z. yuan. (2022). Classified processing of different rice bran fractions according to their component distributions. Int. J. Food Sci. Technol, 57(7), 4052–4064. https://doi.org/10.1111/IJFS.15715
[123] Xinkang, L., Chunmin, G., Lin, W., Liting, J., Xiangjin, F., Qinlu, L., Zhengyu, H., & Chun, L. (2023). Rice storage proteins: focus on composition, distribution, genetic improvement and effects on rice quality. Rice Sci, 30(3), 207–221. https://doi.org/10.1016/J.RSCI.2023.03.005
[124] Larsson, E. (2020). Extraction of rice bran protein screening of enzymatic digestion, solubilization using pH shift (Master’s thesis). Chalmers University of Technology
[125] Nagata, K., Nonoue, Y., Matsubara, K., Mizobuchi, R., Ono, N., Shibaya, T., Ebana, K., Ogiso-Tanaka, E., Tanabata, T., Sugimoto, K., Taguchi-Shiobara, F., Yonemaru, J. I., Uga, Y., Fukuda, A., Ueda, T., Yamamoto, S. I., Yamanouchi, U., Takai, T., Ikka, T., … Yano, M. (2023). Development of 12 sets of chromosome segment substitution lines that enhance allele mining in Asian cultivated rice. Breed. Sci, 73(3), 332–342. https://doi.org/10.1270/JSBBS.23006
[126] Maclean, J., Hardy, B., & Hettel, G. (2013). Rice Almanac: Source book for one of the most important economic activities on earth. CABI publishing.
[127] Li, R., Li, M., Ashraf, U., Liu, S., & Zhang, J. (2019). Exploring the relationships between yield and yield-related traits for rice varieties released in china from 1978 to 2017. Front. Plant Sci., 10, 430305. https://doi.org/10.3389/FPLS.2019.00543/BIBTEX
[128] Yang, S., Feng, Z., Zhang, X., Jiang, K., Jin, X., Hang, Y., Chen, J. Q., & Tian, D. (2006). Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol. Biol, 62(1–2), 181–193. https://doi.org/10.1007/S11103-006-9012-3/METRICS
[129] Zarei, I., Luna, E., Leach, J. E., McClung, A., Vilchez, S., Koita, O., & Ryan, E. P. (2018). Comparative rice bran metabolomics across diverse cultivars and functional rice gene–bran metabolite relationships. Metabolites, 8(4), 63. https://doi.org/10.3390/METABO8040063
[130] Hamada, J. S. (1997). Characterization of protein fractions of rice bran to devise effective methods of protein solubilization. Cereal Chem, 74(5), 662–668. https://doi.org/10.1094/CCHEM.1997.74.5.662
[131] Codex Alimentarius Commission. (2024). FAO and WHO, General standard for food additives. Codex Aliment. Stand, NO. CXS 210–1999.
 
Volume 13, Issue 1
October 2025
Pages 37-60
  • Receive Date: 27 July 2025
  • Revise Date: 13 September 2025
  • Accept Date: 15 September 2025
  • First Publish Date: 15 September 2025
  • Publish Date: 23 October 2025