[1] Gerardi, A. (2023). Global Food Safety Initiative (GFSI): underpinning the safety of the global food chain, facilitating regulatory compliance, trade, and consumer trust. In Present knowledge in food safety (pp. 1089-1098). Academic Press. https://doi.org/10.1016/B978-0-12-819470-6.00058-5
[2] Gwenzi, W., Makuvara, Z., Marumure, J., Simbanegavi, T. T., Mukonza, S. S., & Chaukura, N. (2023). Chicanery in the food supply chain! Food fraud, mitigation, and research needs in low-income countries. Trends Food Sci. Technol., 136, 194-223. https://doi.org/10.1016/j.tifs.2023.03.027
[3] Chen, J., Pan, B. (2023). Food Flavors, Chem. Funct. Prop. Food Components, 363–400.
[4] Handayani, A., Lailaty, I. Q., Rosyidah, A. L., Sari, D. R. T., Yunarto, N., & Suherman, D. (2024). Indonesian Cinnamon (Cinnamomum burmanni (Nees & T. Nees) Blume) as promising medicinal resources: a review. Jurnal Sylva Lestari, 12(3), 610-633. https://doi.org/10.23960/jsl.v12i3.929
[5] Negi, A., & Meenatchi, R. (2023). Herbs and Spices. In Emerging Food Authentication Methodologies Using GC/MS (pp. 253-279). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-30288-6_9
[6] Kumar, P., Tripathi, S., Islam, Z., & Shaida, B. (2023). Detection of Adulteration in Spices. Int. J. Med. Toxicol. Leg. Med., 26(3and4), 138-142. https://doi.org/ 10.5958/0974-4614.2023.00061.X
[7] Sawyer, W. E., & Izah, S. C. (2024). Unmasking food adulteration: public health challenges, impacts and mitigation strategies. ES General, 4, 1091. https://doi.org/ 10.30919/esg1091
[8] Vasu, P., & Martin, A. (2023). Chemical Adulterants in Food: Recent Challenges. In Engineering Aspects of Food Quality and Safety (pp. 31-52). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-30683-9_2
[9] Koczoń, P., Hołaj-Krzak, J. T., Palani, B. K., Bolewski, T., Dąbrowski, J., Bartyzel, B. J., & Gruczyńska-Sękowska, E. (2023). The analytical possibilities of FT-IR spectroscopy powered by vibrating molecules. Int. J. Mol. Sci., 24(2), 1013. https://doi.org/10.3390/ijms24021013
[10] Saji, R., Ramani, A., Gandhi, K., Seth, R., & Sharma, R. (2024). Application of FTIR spectroscopy in dairy products: A systematic review. Food Humanity, 2, 100239. https://doi.org/10.1016/j.foohum.2024.100239
[11] Jamwal, R., Kumari, S., Sharma, S., Kelly, S., Cannavan, A., & Singh, D. K. (2021). Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib. Spectrosc., 113, 103222. https://doi.org/10.1016/j.vibspec.2021.103222
[12] Mangam, V. T., Narla, D., Konda, R. K., & Sarella, P. N. K. (2024). Beyond the spectrum: Exploring unconventional applications of fourier transform infrared (FTIR) spectroscopy. Asian J. Pharm. Anal., 14(2), 86-94. https://doi.org/ 10.52711/2231-5675.2024.00016
[13] Guerrero‐Pérez, M. O., & Patience, G. S. (2020). Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR. Can. J. Chem. Eng., 98(1), 25-33. https://doi.org/10.1002/cjce.23664
[14] Barnes, M., Sulé-Suso, J., Millett, J., & Roach, P. (2023). Fourier transform infrared spectroscopy as a non-destructive method for analysing herbarium specimens. Biol. Lett., 19(3), 20220546. https://doi.org/10.1098/rsbl.2022.0546
[15] Rohman, A., Ghazali, M. A. I. B., Windarsih, A., Riyanto, S., Yusof, F. M., & Mustafa, S. (2020). Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules, 25(22), 5485. https://doi.org/10.3390/molecules25225485
[16] Dashti, A., Weesepoel, Y., Müller-Maatsch, J., Parastar, H., Kobarfard, F., Daraei, B., & Yazdanpanah, H. (2022). Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchem. J., 181, 107735. https://doi.org/10.1016/j.microc.2022.107735
[17] Apolonski, A., Roy, S., Lampe, R., & Sankar Maiti, K. (2020). Molecular identification of bio-fluids in gas phase using infrared spectroscopy. Appl. Opt., 59(17), E36-E41. https://doi.org/10.1364/AO.388362
[18] Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A, 37(1), 19-38. https://doi.org/10.1080/19440049.2019.1675909
[19] Saadi, S., Nacer, N. E., Ariffin, A. A., Ghazali, H. M., Abdulkarim, S. M., Boo, H. C., ... & Anwar, F. (2023). Discrimination of food adulteration by means of PCR and FTIR. Food Humanity, 1, 1362-1378. https://doi.org/10.1016/j.foohum.2023.10.008
[20] Ahmad, A., & Ayub, H. (2022). Fourier transform infrared spectroscopy (FTIR) technique for food analysis and authentication. In Nondestructive quality assessment techniques for fresh fruits and vegetables (pp. 103-142). Singapore: Springer Nature Singapore.
[21] Kaavya, R., Pandiselvam, R., Mohammed, M., Dakshayani, R., Kothakota, A., Ramesh, S. V., ... & Ashokkumar, C. (2020). Application of infrared spectroscopy techniques for the assessment of quality and safety in spices: a review. Appl. Spectrosc. Rev., 55(7), 593-611. https://doi.org/10.1080/05704928.2020.1713801
[22] Shannon, M., Lafeuille, J. L., Frégière-Salomon, A., Lefevre, S., Galvin-King, P., Haughey, S. A., ... & Elliott, C. T. (2022). The detection and determination of adulterants in turmeric using fourier-transform infrared (FTIR) spectroscopy coupled to chemometric analysis and micro-FTIR imaging. Food Control, 139, 109093. https://doi.org/10.1016/j.foodcont.2022.109093
[23] Galvin-King, P., Haughey, S. A., & Elliott, C. T. (2021). Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. J. Food Compos. Anal., 96, 103757. https://doi.org/10.1016/j.jfca.2020.103757
[24] Lixourgioti, P., Goggin, K. A., Zhao, X., Murphy, D. J., van Ruth, S., & Koidis, A. (2022). Authentication of cinnamon spice samples using FT-IR spectroscopy and chemometric classification. LWT, 154, 112760. https://doi.org/10.1016/j.lwt.2021.112760
[25] Indrayanto, G., & Rohman, A. (2020). The use of FTIR spectroscopy combined with multivariate analysis in food composition analysis. Spectrosc. Tech. Artif. Intell. Food Bever. Anal., 25-51. https://doi.org/10.1007/978-981-15-6495-6_2
[26] Damto, T., Zewdu, A., & Birhanu, T. (2023). Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia. Curr. Res. Food Sci., 7, 100565. https://doi.org/10.1016/j.crfs.2023.100565
[27] Masoudi, M., & Khodabakhshian, R. (2025). Genetic algorithm-optimized PLS for detecting adulteration in cinnamon powder via FT-IR spectroscopy. Expert Syst. Appl., 128522. https://doi.org/10.1016/j.eswa.2025.128522
[28] Abbasi-Tarighat, M., Abdi, G., Heidari Ghorghosheh, F., & Shahmohammadi Bayatiyani, K. (2023). Multivariate Authentication of Herbs and spices through UV-Vis and FT-IR fingerprint. Anal. Bioanal. Chem. Res., 10(3), 301-317. https://doi.org/ 10.22036/abcr.2023.366412.1847
[29] Pagliari, S., Forcella, M., Lonati, E., Sacco, G., Romaniello, F., Rovellini, P., ... & Bruni, I. (2023). Antioxidant and anti-inflammatory effect of cinnamon (Cinnamomum verum J. Presl) bark extract after in vitro digestion simulation. Foods, 12(3), 452. https://doi.org/10.3390/foods12030452
[30] Feltes, G., Ballen, S. C., Steffens, J., Paroul, N., & Steffens, C. (2023). Differentiating True and False Cinnamon: Exploring Multiple Approaches for Discrimination. Micromachines, 14(10), 1819. https://doi.org/10.3390/mi14101819
[31] Vinothkanna, A., Dar, O. I., Liu, Z., & Jia, A. Q. (2024). Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem., 138893. https://doi.org/10.1016/j.foodchem.2024.138893
[32] Hashemi-Nasab, F. S., Talebian, S., & Parastar, H. (2023). Multiple adulterants detection in turmeric powder using Vis-SWNIR hyperspectral imaging followed by multivariate curve resolution and classification techniques. Microchem. J., 185, 108203. https://doi.org/10.1016/j.microc.2022.108203
[33] Khodabakhshian, R., Bayati, M. R., & Emadi, B. (2021). An evaluation of IR spectroscopy for authentication of adulterated turmeric powder using pattern recognition. Food Chem., 364, 130406. https://doi.org/10.1016/j.foodchem.2021.130406
[34] Khodabakhshian, R., Lavasani, H. S., & Weller, P. (2023). A methodological approach to preprocessing FTIR spectra of adulterated sesame oil. Food Chem., 419, 136055. https://doi.org/10.1016/j.foodchem.2023.136055
[35] da Silva Bruni, A. R., de Oliveira, V. M. A. T., Fernandez, A. S. T., Sakai, O. A., Março, P. H., & Valderrama, P. (2021). Attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy and chemometrics for organic cinnamon evaluation. Food Chem., 365, 130466. https://doi.org/10.1016/j.foodchem.2021.130466
[36] Wen, Y., Zhou, S., Wang, L., Li, Q., Gao, Y., & Yu, X. (2022). New method for the determination of the induction period of walnut oil by fourier transform infrared spectroscopy. Food Anal. Methods, 1-11. https://doi.org/10.1007/s12161-021-02170-6
[37] Fattahi, S. H., Kazemi, A., Khojastehnazhand, M., Roostaei, M., & Mahmoudi, A. (2024). The classification of Iranian wheat flour varieties using FT-MIR spectroscopy and chemometrics methods. Expert Syst. Appl., 239, 122175. https://doi.org/10.1016/j.eswa.2023.122175
[38] Jiang, D., Zhang, Y., Ge, Y., & Wang, K. (2023). Fusion Recalibration Method for Addressing Multiplicative and Additive Effects and Peak Shifts in Analytical Chemistry. Chemosensors, 11(9), 472. https://doi.org/10.3390/chemosensors11090472
[39] Parsaei-Khomami, A., Badiei, A., Ghavami, Z. S., & Ghasemi, J. B. (2022). A new fluorescence probe for simultaneous determination of Fe2+ and Fe3+ by orthogonal signal correction-principal component regression. J. Mol. Struct., 1252, 131978. https://doi.org/10.1016/j.molstruc.2021.131978
[40] Ji, Q., Li, C., Fu, X., Liao, J., Hong, X., Yu, X., ... & Qiu, Y. (2023). Protected Geographical Indication Discrimination of Zhejiang and Non-Zhejiang Ophiopogonis japonicus by Near-Infrared (NIR) Spectroscopy Combined with Chemometrics: The Influence of Different Stoichiometric and Spectrogram Pretreatment Methods. Molecules, 28(6), 2803. https://doi.org/10.3390/molecules28062803
[41] Reddy, P., Panozzo, J., Guthridge, K. M., Spangenberg, G. C., & Rochfort, S. J. (2023). Single seed near-infrared hyperspectral imaging for classification of perennial ryegrass seed. Sensors, 23(4), 1820. https://doi.org/10.3390/s23041820
[42] Qian, S., Wang, Z., Chao, H., Sheng, X., Zhao, X., Lu, Z., ... & Chen, K. (2024). Development of near-infrared spectroscopy calibration model and monitoring software: For monitoring hexamethylenetetramine concentration in hexamethylenetetramine–acetic acid solution. Infrared Phys. Technol., 139, 105286. https://doi.org/10.1016/j.infrared.2024.105286
[43] Khodabakhshian, R., Bayati, M. R., & Emadi, B. (2022). Adulteration detection of Sudan Red and metanil yellow in turmeric powder by NIR spectroscopy and chemometrics: The role of preprocessing methods in analysis. Vib. Spectrosc., 120, 103372. https://doi.org/10.1016/j.vibspec.2022.103372
[44] Yang, W., Xiong, Y., Xu, Z., Li, L., & Du, Y. (2022). Piecewise preprocessing of near-infrared spectra for improving prediction ability of a PLS model. Infrared Phys. Technol., 126, 104359. https://doi.org/10.1016/j.infrared.2022.104359
[45] Xie, L., Zhu, J., Wang, Y., Wang, N., Liu, F., Chen, Z., ... & Shen, X. (2022). Rapid and accurate determination of prohibited components in pesticides based on near infrared spectroscopy. Infrared Phys. Technol., 121, 104038. https://doi.org/10.1016/j.infrared.2022.104038
[46] de Lima, A. B. S., Batista, A. S., de Jesus, J. C., de Jesus Silva, J., de Araújo, A. C. M., & Santos, L. S. (2020). Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control, 107, 106802. https://doi.org/10.1016/j.foodcont.2019.106802
[47] Hu, J., Zhang, Y., Xiao, Z., & Wang, X. (2018). Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Ind. Crops Prod., 122, 85-92. https://doi.org/10.1016/j.indcrop.2018.05.058
[48] Wu, Y., Xian, Y., Guo, X., Chen, L., Zhao, X., Wang, B., & Wang, L. (2018). Development and validation of a screening and quantification method for simultaneous determination of seven fluorescent whitening agents in commercial flour using UPLC–MS/MS. Food chem., 243, 162-167. https://doi.org/10.1016/j.foodchem.2017.09.110
[49] Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Adsorption of copper (II) ions onto hazelnut shell and apricot stone activated carbons. Adsorp. Sci. Technol., 28(4), 327-340. https://doi.org/10.1260/0263-6174.28.4.327
[50] Dave, G., & Modi, H. (2018). FT-IR method for estimation of phytic acid content during bread-making process. J. Food Meas. Charact., 12(3), 2202-2208. https://doi.org/10.1007/s11694-018-9836-y
[51] Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy, 35(6), 1319-1324. https://doi.org/10.1016/j.renene.2009.11.042
[52] Moghimi, A., Aghkhani, M. H., Sazgarnia, A., & Sarmad, M. (2010). Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosyst. Eng., 106(3), 295-302. https://doi.org/10.1016/j.biosystemseng.2010.04.002
[53] Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. R. (2016). Visible-NIR infrared spectroscopy for pomegranate fruit quality assessment: chemometrics and common preprocessing methods. Ann. Food Sci. Technol., 17(1).
[54] Tan, J., Liu, J. Y., Su, H., Yang, X. H., & Li, H. F. (2024). Detection of adulteration of cumin powder by front-face synchronous fluorescence spectroscopy: The influence of the natural variation of adulterants. Food Control, 158, 110228. https://doi.org/10.1016/j.foodcont.2023.110228
[55] Liu, Y., Finley, J., Betz, J. M., & Brown, P. N. (2018). FT-NIR characterization with chemometric analyses to differentiate goldenseal from common adulterants. Fitoterapia, 127, 81-88. https://doi.org/10.1016/j.fitote.2018.02.006
[56] Wu, S., Wang, L., Zhou, G., Liu, C., Ji, Z., Li, Z., & Li, W. (2023). Strategies for the content determination of capsaicin and the identification of adulterated pepper powder using a hand-held near-infrared spectrometer. Food Res. Int., 163, 112192. https://doi.org/10.1016/j.foodres.2022.112192
[57] Masoudi, M., & Khodabakhshian, R. (2025). Genetic algorithm-optimized PLS for detecting adulteration in cinnamon powder via FT-IR spectroscopy. Expert Syst. Appl., 128522. https://doi.org/10.1016/j.eswa.2025.128522