Optimization of Persian lime essential oil (Citrus latifolia) microencapsulation through spout fluidized bed drying

Document Type : Research Article

Authors

1 Ph.D. student of Food Technology, Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

2 Assistant Professor, Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

3 Professor, Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

4 Associate Professor, Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

Abstract

In the food industry, fluidized bed drying encapsulation is important due to its protective effects on sensitive oily materials such as essential oils. In this study, Persian lime essential oil (EO) was encapsulated at ratios of 10%, 20%, and 30% using wall materials including maltodextrin (25%, 50%, and 75%) and whey protein concentrate (10%, 20%, and 30%) through the fluidized bed drying method. Then, using response surface methodology, the encapsulation yield, encapsulation efficiency, moisture content, hygroscopicity, bulk density, tapped density, particle density, flowability index, Hausner ratio, porosity, solubility, inhibitory power, and release in buffer and simulated saliva were optimized. The results indicated that a higher concentration of essential oil and whey protein concentrate along with a medium concentration of maltodextrin led to an increase in encapsulation yield, encapsulation efficiency, bulk density, tapped density, particle density, flowability index, solubility, inhibitory power, and release while decreasing moisture content, hygroscopicity, and porosity. Therefore, the optimization of dependent and independent variables showed that a medium concentration of maltodextrin and a high concentration of whey protein concentrate in wall materials, with a high concentration of EO, are required to achieve the desired optimized properties of the final microcapsule (such as high antioxidant activity and low moisture content). According to the results, the optimized conditions included using lime essential oil, maltodextrin, and whey protein concentrate at 29.68%, 41.28%, and 30%, respectively. Since microencapsulation using a fluidized bed drying allows for low-temperature microencapsulation, it effectively preserved the antioxidant properties of lime essential oil (with a DPPH radical scavenging percentage of 63.64% in run 18) during processing in this study.

Graphical Abstract

Optimization of Persian lime essential oil (Citrus latifolia) microencapsulation through spout fluidized bed drying

Highlights

  • The essential oil is extracted from the peel of Persian limes and is important in waste management and creating added value from them.
  • Microencapsulation of Persian limes essential oil was carried out for the first time using a spout fluidized bed drying technique, during which the process is carried out at low temperatures and has numerous advantages.
  • Microencapsulation in this research was carried out with natural polymers, which allows the final product to be used in the food and pharmaceutical industries.

Keywords

Main Subjects


  1. Esteban-Decloux, M., & Giampaoli, P. (2020). Bitter orange peel essential oil: A review of the different factors and chemical reactions influencing its composition. Flavour Fragr. J., 35(3), 247–269.
    1. https://doi.org/10.1002/ffj.3570
  2. Karimirad, R., Behnamian, M., & Dezhsetan, S. (2020). Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocolloid, 100,
    1. https://doi.org/10.1016/j.foodhyd.2019.105387
  3. Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Manag., 80, 252-273.
    1. https://doi.org/10.1016/j.wasman.2018.09.024
  4. Gavahian, M., Chu, Y. H., & Mousavi Khaneghah, A. (2019). Recent advances in orange oil extraction: an opportunity for the valorisation of orange peel waste a review. In J Food Sci Technol, 54(4), 925–932.
    1. https://doi.org/10.1111/ijfs.13987
  5. Sahraoui, N., Vian, M. A., El Maataoui, M., Boutekedjiret, C., & Chemat, F. (2011). Valorization of citrus by-products using Microwave Steam Distillation (MSD). Innov Food Sci Emerg Technol, 12(2), 163-170.
    1. https://doi.org/10.1016/j.ifset.2011.02.002
  6. Li, Y., Liu, S., Zhao, C., Zhang, Z., Nie, D., Tang, W., & Li, Y. (2022). The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules, 27(20), 7044
    1. https://doi.org/10.3390/molecules27207044
  7. Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J Food Meas Charact, 14(2), 862-875.
    1. https://doi.org/10.1007/s11694-019-00334-x
  8. Taherimanesh, F., Hojjati, M., Barzegar, H., Mehrnia, M. A., & Alizadeh Behbahani, B. (2024). Investigating the chemical properties of Mentha spicata L. essential oil and the possibility of its using in mayonnaise as a natural antioxidant. Food Processing and Preservation Journal, 16(3), 79–99. [In Persian]
    1. https://doi.org/22069/fppj.2024.22555.1817
  9. Rahmati-Joneidabad, M. (2024). Identification of chemical compounds of Ocimum basilicum essential oil and its effect on inhibiting the growth of fungi causing postharvest rots in apple. Research in Plant Metabolites, 1(3), 5–20. [In Persian]
    1. https://doi.org/22034/jrpsm.2023.158874
  10. Andrade, M. A., Barbosa, C. H., Shah, M. A., Ahmad, N., Vilarinho, F., Khwaldia, K., Silva, A. S., & Ramos, F. (2022). Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants (Basel, Switzerland), 12(1),
    1. https://doi.org/3390/antiox12010038
  11. Padilla-de la Rosa, J. D., Manzano-Alfaro, M. D., Gómez-Huerta, J. R., Arriola-Guevara, E., Guatemala-Morales, G., Cardador-Martínez, A., & Estarrón-Espinosa, M. (2021). Innovation in a Continuous System of Distillation by Steam to Obtain Essential Oil from Persian Lime Juice (Citrus latifoliaTanaka). Molecules26(14),
    1. https://doi.org/10.3390/molecules26144172
  12. Kaur, S., Panesar, P. S., & Chopra, H. K. (2023). Citrus processing by-products: an overlooked repository of bioactive compounds. Rev. Food Sci. Nutr., 63(1), 67–86.
    1. https://doi.org/10.1080/10408398.2021.1943647
  13. Balakrishnan, M., Gayathiri, S., Preetha, P., Pandiselvam, R., Jeevarathinam, G., Delfiya, D. S. A., & Kothakota, A. (2021). Microencapsulation of bixin pigment by spray drying: Evaluation of characteristics. LWT, 145,
    1. https://doi.org/10.1016/j.lwt.2021.111343
  14. Van, C. K., Nguyen, P. T. N., Nguyen, T. T. T., & Bach, L. G. (2024). Microencapsulation of Citrus latifolia peel essential oil by spray-drying using maltodextrin: Characterization, antimicrobial activities, and release profile. LWT, 197,
    1. https://doi.org/10.1016/j.lwt.2024.115825
  15. Ghasemi, S., Jafari, S. M., Assadpour, E., & Khomeiri, M. (2018). Nanoencapsulation of D-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloid., 77, 152-162.
    1. https://doi.org/10.1016/j.foodhyd.2017.09.030
  16. Azhdarzadeh, F., & Hojjati, M. (2016). Chemical Composition and Antimicrobial Activity of Leaf, Ripe and Unripe Peel of Bitter Orange (Citrus aurantium) Essential Oils. Nutr Food Sci Res., 3(1), 43–50.
    1. https://doi.org/18869/acadpub.nfsr.3.1.43
  17. Akhavan-Mahdavi, S., Sadeghi, R., Faridi Esfanjani, A., Hedayati, S., Shaddel, R., Dima, C., Malekjani, N., Boostani, S., & Jafari, S. M. (2022). Nanodelivery systems for d-limonene; techniques and applications. Food Chem., 384,
    1. https://doi.org/10.1016/j.foodchem.2022.132479
  18. Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry Technol., 38, 235-258.
    1. https://doi.org/10.1080/07373937.2019.1653906
  19. Campelo, P. H., Sanches, E. A., Fernandes, R. V. de B., Botrel, D. A., & Borges, S. V. (2018). Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res Int., 105, 936-944.
    1. https://doi.org/10.1016/j.foodres.2017.12.034
  20. Ghasemi, S., Assadpour, E., Kharazmi, M. S., Jafarzadeh, S., Zargar, M., & Jafari, S. M. (2023). Encapsulation of Orange Peel Oil in Biopolymeric Nanocomposites to Control Its Release under Different Conditions. Foods, 12(4). 831
    1. https://doi.org/3390/foods12040831
  21. Haas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technol., 370, 104-115.
    1. https://doi.org/10.1016/j.powtec.2020.04.065
  22. Zaghari, L., Basiri, A., & Rahimi, S. (2020). Preparation and characterization of double coated probiotic bacteria via a fluid-bed process: A case study on Lactobacillus reuteri. Int J Food Eng., 16(9),
    1. https://doi.org/org/10.1515/ijfe-2019-0384
  23. Velázquez-Contreras, C., Osorio-Revilla, G., & Gallardo-Velázquez, T. (2014). Encapsulation of Orange Essential Oil in a Spout-Fluid Bed Dryer with a Draft Tube on a Bed of Inert Solids. Dry Technol., 32(14), 1718–1726.
    1. https://doi.org/10.1080/07373937.2014.924525
  24. Razola-Díaz, M. del C., Guerra-Hernández, E. J., García-Villanova, B., & Verardo, V. (2021). Recent developments in extraction and encapsulation techniques of orange essential oil. Food Chem., 354,
    1. https://doi.org/10.1016/j.foodchem.2021.129575
  25. Benelli, L., & Oliveira, W. P. (2019). Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food Bioprod Process., 114,  216-226.
    1. https://doi.org/10.1016/j.fbp.2019.01.004
  26. Arem, Y. G., Morais, M. S., Oliveira, W. P. (2024). Optimized spouted bed production of antioxidant dried powder from green tea. Dry Technol. 42(5),795–811.
    1. https://doi.org/10.1080/07373937.2024.2318437
  27. Jayatunga, G. K., Amarasinghe, B. M. W. P. K. (2023). Influence of Draft Tube on Drying Behaviour of Black Pepper in Spouted Bed. Moratuwa Eng Res Conf MERCon. 183–8.
  28. Souza, C. R. F., Fregonesi, F., Oliveira, W. P. (2025). Bioactive dry extract production from Hymenaea courbaril bark via spouted bed drying. Can J Chem Eng., 103(4), 1562-1581.
    1. https://doi.org/10.1002/cjce.25286
  29. Sharifpour, , Javanmard Dakheli, M. J., Rahimi, S., Bassiri, A. (2025). Optimization of bitter orange (Citrus aurantium L.) essential oil microencapsulation through spout fluidized bed drying. J Food Meas Charact., 19, 89-107.
    1. https://doi.org/10.1007/s11694-024-02948-2
  30. Álvarez-Henao, M. V., Saavedra, N., Medina, S., Jiménez Cartagena, C., Alzate, L. M., & Londoño-Londoño, J. (2018). Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chem., 256, 181-187.
    1. https://doi.org/10.1016/j.foodchem.2018.02.059
  31. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol., 26 (7), 816-835.
    1. https://doi.org/10.1080/07373930802135972
  32. Bringas-Lantigua, M., Expósito-Molina, I., Reineccius, G. A., López-Hernández, O., & Pino, J. A. (2011). Influence of Spray-Dryer Air Temperatures on Encapsulated Mandarin Oil. Dry Technol., 29(5), 520–526.
    1. https://doi.org/10.1080/07373937.2010.513780
  33. Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem., 254,  281-291.
    1. https://doi.org/10.1016/j.foodchem.2018.02.026
  34. Santhalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol., 274, 37-43.
    1. https://doi.org/10.1016/j.powtec.2015.01.016
  35. Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem., 276, 180-186.
    1. https://doi.org/10.1016/j.foodchem.2018.09.173
  36. Dima, C., Pətraşcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem., 195, 39-48.
    1. https://doi.org/10.1016/j.foodchem.2015.05.044
  37. Chen, L., Wang, Z., Liao, P., Li, A., Zhang, Y., Li, H., & Sun, J. (2021). The effect of saliva on the aroma release of esters in simulated baijiu under the impact of high ethanol concentration. J Food Compos Anal., 104,
    1. https://doi.org/10.1016/j.jfca.2021.104134
  38. Rezvankhah, A., Emam-Djomeh, Z., Safari, M., Salami, M., & Askari, G. (2022). Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. J Food Process Preserv., 46(6),
    1. https://doi.org/10.1111/jfpp.16554
  39. Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng., 115(4), 443-451.
    1. https://doi.org/10.1016/j.jfoodeng.2012.03.033
  40. Thuong Nhan, N. P., Thanh, V. T., Cang, M. H., Lam, T. D., Huong, N. C., Hong Nhan, L. T., Truc, T. T., Tran, Q. T., & Bach, L. G. (2020). Microencapsulation of lemongrass (cymbopogon citratus) essential oil via spray drying: Effects of feed emulsion parameters. , 8(1), 40
    1. https://doi.org/10.3390/pr8010040
  41. Ozdemir, N., Bayrak, A., Tat, T., Altay, F., Kiralan, M., & Kurt, A. (2021). Microencapsulation of basil essential oil: utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. J Food Meas Charact., 15(2), 1865-1876.
    1. https://doi.org/10.1007/s11694-020-00771-z
  42. De Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., da Silva Agostini, D. L., de Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020a). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int J Biol Macromol., 15(143), 991-999.
    1. https://doi.org/1016/j.ijbiomac.2019.09.160
  43. De Barros Fernandes, R. V., Marques, G. R., Borges, S. V., & Botrel, D. A. (2014). Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Ind Crop Prod., 58, 173-181.
    1. https://doi.org/10.1016/j.indcrop.2014.04.025
  44. Aksoylu Özbek, Z., & Günç Ergönül, P. (2020). Optimisation of wall material composition of freeze–dried pumpkin seed oil microcapsules: Interaction effects of whey protein, maltodextrin, and gum Arabic by D–optimal mixture design approach. Food Hydrocolloid., 107,
    1. https://doi.org/10.1016/j.foodhyd.2020.105909
  45. Fernandes, R. V. de B., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., de Oliveira, C. R., Yoshida, M. I., & Botrel, D. A. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind Crop Prod., 94, 413-423.
    1. https://doi.org/10.1016/j.indcrop.2016.09.010
  46. Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohyd Polym., 101(1), 524-532.
    1. https://doi.org/10.1016/j.carbpol.2013.09.083
  47. Bajac, J., Nikolovski, B., Lončarević, I., Petrović, J., Bajac, B., Đurović, S., & Petrović, L. (2022). Microencapsulation of juniper berry essential oil (Juniperus communis) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloid., 125, 107430.
    1. https://doi.org/10.1016/j.foodhyd.2021.107430
  48. De Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., A. C. Gomes, A., Kotzebue, L. R. V., da Silva Agostini, D. L., de Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020b). Microencapsulation of sweet orange essential oil (Citrus aurantium dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: preparation, characterization, antimicrobial and antioxidant activities. Int. J. Biol. Macromol,. 143, 991-999.
    1. https://doi.org/10.1016/j.ijbiomac.2019.09.160
  49. Baysan, U., Elmas, F., & Koç, M. (2019). The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J Food Process Eng., 42(4),
    1. https://doi.org/10.1111/jfpe.13024
  50. Karrar, E., Mahdi, A. A., Sheth, S., Mohamed Ahmed, I. A., Manzoor, M. F., Wei, W., & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int J Biol Macromol., 171, 208-216.
    1. https://doi.org/10.1016/j.ijbiomac.2020.12.045
  51. Sa ntos, N. C., Almeida, R. L. J., de Brito, A. C. O., Silva, V. M. de A., de Lima, T. L. B., Nogueira, L. P. da S., de Sousa, F. M., dos Santos, F. S., Filho, M. T. L., de Moraes, M. S., de Oliveira, A. P., Silva, S. do N., Dias, R. A. de L., & de Santana, M. de F. S. (2024). Encapsulation of avocado oil with modified rice starch: thermal and functional properties and gastrointestinal release. J Food Meas Charact., 18(6), 4665–4677.
    1. https://doi.org/10.1007/s11694-024-02522-w
  52. Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol., 126, 731-742.
    1. https://doi.org/10.1016/j.ijbiomac.2018.12.161
  53. Noghabi, M. S., Molaveisi, M., & Dehnad, D. (2023). Development of Persian gum-based microcapsules to speed up the release of cinnamon essential oil in the simulated saliva conditions. LWT, 183,
    1. https://doi.org/10.1016/j.lwt.2023.114802
  54. Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2023). Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Sci Nutr., 11(6), 2974–2989.
    1. https://doi.org/10.1002/fsn3.3279
  55. Mirzaee, H., Ahmadi Gavlighi, H., Nikoo, M., Udenigwe, C. C., & Khodaiyan, F. (2023). Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci Nutr., 11(3), 1257–1271.
    1. https://doi.org/1002/fsn3.3160
  56. Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2021). Characterization of bioactive peptides produced from green lentil (Lens culinaris) seed protein concentrate using Alcalase and Flavourzyme in single and sequential hydrolysis. J Food Process Preserv., 45(11), 1–16.
    1. https://doi.org/10.1111/jfpp.15932
  1. Rezvankhah, A., Ghanbarzadeh, B., Mirzaee, H., Ahmadi Hassan Abad, A., Tavakkoli, A., & Yarmand, A. (2024). Conjugation of gum Arabic and lentil protein hydrolysates through Maillard reaction: Antioxidant activity, volatile compounds, functional and sensory properties. Food Sci Nutr., 12(4), 2855–2873.
    1. https://doi.org/10.1002/fsn3.3966
  2. Ni, Z. J., Liu, X., Xia, B., Hu, L. T., Thakur, K., & Wei, Z. J. (2021). Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem.: X, 11,
    1. https://doi.org/10.1016/j.fochx.2021.100127
  3. Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Dry Technol., 31(4), 470–478.
    1. https://doi.org/10.1080/07373937.2012.742103
  4. Zhang, Z., Wang, B., & Adhikari, B. (2022). Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. Future Food., 6,
    1. https://doi.org/10.1016/j.fufo.2022.100193
  5. Yadav, K., Bajaj, R. K., Mandal, S., & Mann, B. (2020). Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. J Food Sci Technol., 57(2), 426-434.
    1. https://doi.org/1007/s13197-019-04070-4
  6. Hasani, S., Ojagh, S. M., & Ghorbani, M. (2018). Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. Int J Biol Macromol., 115, 143–151.
    1. https://doi.org/10.1016/j.ijbiomac.2018.04.038
  7. Bannikova, A., Zyainitdinov, D., Evteev, A., Drevko, Y., & Evdokimov, I. (2020). Microencapsulation of polyphenols and xylooligosaccharides from oat bran in whey protein-maltodextrin complex coacervates: In-vitro evaluation and controlled release. Bioact Carbohydr Diet Fibre, 23,
    1. https://doi.org/10.1016/j.bcdf.2020.100236