Characterization of Functional White Chocolate Enriched by Mango Peel and Tagatose: A Practical Investigation

Document Type : Research Article

Authors

1 Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran–Iran

2 Department of Food Science & Technology, Shahr-e-Qhods Branch, Islamic Azad University, Tehran–Iran

Abstract

With the diabetes increasing spread, as well as customers' desire to consume of functional foods, the dietary products formulation has been extensively deliberated. For this tenacity, in the current case, mango peel powder exploited at levels of 0, 5, 10 and 15% as well as tagatose at levels of 0, 11, 22 and 33% in white chocolate. Chocolates evaluated for rheological properties, sensory properties, and physicochemical assets (moisture, total sugar, acidity, fat, water activity, and color indexes), as well as the calorie, phenolic compounds content and free radical scavenging activity. The outcomes presented that raising the mango peel amount increased moisture, water activity, total sugar and fat in chocolates, while moisture, and water activity reduced by using tagatose, significantly (p≤0.05). In conclusion, the sample T10, with 5% of mango peel powder and 11% of tagatose was chosen as the best formulation for enrichment of white chocolate due to its good characteristics and high organoleptic value. The addition of mango peel enhanced the chocolate nutritional excellence and furthermore developed the nutraceutical assets by improving its antioxidant activity.

Graphical Abstract

Characterization of Functional White Chocolate Enriched by Mango Peel and Tagatose: A Practical Investigation

Highlights

  • Chocolate is one of the greatest synthetic and consumed sweetmeat products.
  • Humans with metabolic malfunctions such as diabetes should not consume foodstuffs rich in fat and sugars.
  • The tagatose and mango peel powder consequence on the physicochemical and sensory possessions of white chocolate.
  • It can be determined that in chocolate samples with mango peel powder and tagatose are the appropriate sucrose substitutes.

Keywords

Main Subjects


  1. Aidoo, R.P., Afoakwa, E.O., & Dewettinck, K. (2014). Optimization of Inulin and Polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture – Rheological, microstructure and physical quality characteristics. J Food Eng., 126, 35–42. https://doi.org/10.1016/j.jfoodeng.2013.10.036.
  2. Nebesny, E., Żyżelewicz, D., Motyl, I., & Libudzisz, Z. (2005). Properties of sucrose-free chocolate enriched with viable lactic acid bacteria. Euro Food Res Technol., 220, 358–362. http://doi: 10.1007/s00217-004-1069-0.
  3. Furlán, L.T.R., Baracco, Y., Lecot, J., Zaritzky, N., & Campderrós, M.E. (2017). Effect of sweetener combination and storage temperature on physicochemical properties of sucrose free white chocolate. Food Chem., 229, 610–620. http://doi: 10.1016/j.foodchem.2017.03.002.
  4. Afoakwa, E.O., Paterson, A., & Fowler, M. (2007). Factors influencing rheological and textural qualities in chocolate–a review.  ‎Trends Food Sci Technol., 18, 290–298. https://doi.org/10.1016/j.tifs.2007.02.002.
  5. Shah, A.B., Jones, G.P., & Vasiljevic, T. (2010). Sucrose-free chocolate sweetened with Stevia rebaudiana extract and containing different bulking agents – effects on physicochemical and sensory properties. J. Food Sci Technol., 45, 1426–1435. https://doi.org/10.1111/j.1365-2621.2010.02283.x.
  6. Rezende, N.V., Benassi, M.T., Vissotto, F.Z., Augusto, P.P.C., & Grossmann, M.V.E. (2015). Effects of fat replacement and fibre addition on the texture, sensory acceptance and structure of sucrose-free chocolate. Int J Food Sci., 50, 1413–1420. http:// doi: 10.1111/ijfs.12791.
  7. Konar, N. (2013). Influence of conching temperature and some bulk sweeteners on physical and rheological properties of prebiotic milk chocolate including containing inulin. Euro Food Res Technol., 236, 135–143. https://doi.org/10.1007/s00217-012-1873-x.
  8. Konar, N., Palabiyik, I., Toker, O.S., Polat, D.G., Kelleci, E., Pirouziane, H.R., Akcicek, A., & Sagdic, O. (2018). Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. J Funct Foods., 43, 206–213. https://doi.org/10.1016/j.jff.2018.02.016.
  9. Homayouni Rad, A., Azizi, A., Darghahi, R., Bakhtiari, O., Javadi, M., Jafarzadeh Moghaddam, M., Homayouni Rad, H., Mirtajeddini, S.B., Mobaraki Asl, N., Tayebali, M., & Rasouli Pirouzian, H. (2018). Development of Synbiotic Milk Chocolate Enriched with Lactobacillus paracasei, D-tagatose and Galactooligosaccharide. Food Biotechnol., 5, 59–68. https://doi.org/10.22037/afb.v5i2.19955.
  10. Ajila, C.M., Naidu, K.A., Bhat, S.G., & Prasada Rao, U.J.S. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chem., 105, 982–988. https://doi.org/ 10.1016/j.foodchem.2007.04.052.
  11. Gaona, I.J.A., Fanzone, M.L., Chirife, J., Ferreras-Charro, R., García-Estévez, I., Escribano-Bailón, M.T., & Galmarini, M.V. (2024). Phenolic composition and sensory dynamic profile of chocolate samples enriched with red wine and blueberry powders. Food Res Int., 179, 113971. https://doi.org/10.1016/j.foodres.2024.113971.
  12. Didar, Z. (2024). Characterization of white chocolate enriched with co-encapsulated Lactobacillus acidophilus (La-5) and rose hip shell fruit extract: Characterization, probiotic viability during storage, and in vitro gastrointestinal digestion. Food Sci Nutr., 12, 890–906. https://doi.org/10.1002/fsn3.3805.
  13. Zarić,  D., Rakin, M., Bulatović, M., Krunić, T., Lončarević, I.,  Pajin, B.,  & Blaževska, Z. (2024). Influence of added extracts of herbs (salvia lavandulifolia, salvia officinalis) and fruits (malpighia glabra) on rheological, textural, and functional (AChE-inhibitory and antioxidant activity) characteristics of dark chocolate. J Food Meas Charact., 18, 772–782. https://doi.org/10.1007/s11694-023-02210-1.
  14. Salgado, A., Moreira-Leite, B., Afonso, A., Infante, P., & Mata, P. (2023). Chocolates enriched with seaweed: Sensory profiling and consumer segmentation. Int J Gastron Food Sci., 33, 100747. https://doi.org/10.1016/j.ijgfs.2023.100747.
  15. Özbal, B., Çelekli, A., Gün, D., & Hüseyin Bozkurt, H. (2022). Effect of Arthrospira platensis incorporation on nutritional and sensory attributes of white chocolate. Int J Gastron Food Sci., 28, 100544. https://doi.org/10.1016/j.ijgfs.2022.100544.
  16. Grassia, M., Messia, M.C., Marconi, E., Şakiyan Demirkol, Ȫ., Erdoğdu, F., Sarghini, F., Cinquanta, L., Corona, O., & Planeta, D. (2021). Microencapsulation of Phenolic Extracts from Cocoa Shells to Enrich Chocolate Bars.  Plant Foods Hum Nutr., 76, 449–457. https://doi.org/10.1007/s11130-021-00917-4.
  17. Bolenz, S., & Glöde, L. (2021). Technological and nutritional aspects of milk chocolate enriched with grape pomace products. Eur Food Res Technol.,247, 623–636. https://doi.org/10.1007/s00217-020-03651-4.
  18. (2005). Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC, Methods 945.39, 923.09 and 925.10.
  19. Afoakwa, E.O., Paterson, A., Fowler, M., & Vieira J. (2009). Influence of tempering and fat crystallization behaviours on microstructural and melting properties in dark chocolate systems. Food Res Int., 42, 200–209. https://doi.org/10.1016/j.foodres.2008.10.007.
  20. Kayode, R.M.O., & Sani, A. (2008). Physicochemical and proximate composition of mango (Mangifera indica) kernel cake fermented with mono-culture of fungal isolates obtained from naturally decomposed mango kernel. Life Sci J., 5, 55–63.
  21. Ajila, C.M., Aalami, M., Leelavathi, K., & Prasada Rao, U.J.S. (2010). Mango peel powder, A potential source of antioxidant and dietary fiber in macaroni preparations. Innov Food Sci Emerg Technol., 11, 219–224. https://doi.org/10.1016/j.ifset.2009.10.004.
  22. Briones, V., & Aguilera, J.M. (2005). Image analysis of changes in surfaces color of chocolate. Food Res Int., 38, 87–94. https://doi.org/10.1016/j.foodres.2004.09.002.
  23. Dorta, E., Lobo, M.G., & González, M. (2012). Using drying treatments to stabilize mango peel and seed, Effect on antioxidant activity. LWT – Food Sci Technol., 45, 261–268. https://doi.org/10.1016/j.lwt.2011.08.016.
  24. Tacias-Pascacio,  V., G., Castañeda-Valbuena, D., Fernandez-Lafuente, R., Berenguer-Murcia, Á., Meza-Gordillo, R.,  Gutiérrez, L. F.,  Pacheco, N., Cuevas-Bernardino, J. C., & Ayora-Talavera, T. (2022). Phenolic compounds in mango fruit: a review. J Food Meas Charact., 16, 619–636. https://doi.org/10.1007/s11694-021-01192-2
  25. Marçal, S., & Pintado, M. (2021). Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends Food Sci Technol., 114, 427-489. https://doi.org/10.1016/j.tifs.2021.06.012