[1] Ozgur, A., Dogan, M., & Karaman, S. (2017). Rheological interactions of the xanthan gum and carboxymethyl cellulose as alternative to pectin in organic acid–sucrose model system: simplex lattice mixture design approach. Eur. Food Res. Technol., 243, 1041-1056. doi: 10.1007/s00217-016-2809-7
[2] Salehi, F. (2020). Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. J. Texture Stud., 51, 361-370. doi: 10.1111/jtxs.12482
[3] Kang, J., Yue, H., Li, X., He, C., Li, Q., Cheng, L., Zhang, J., Liu, Y., Wang, S., & Guo, Q. (2023). Structural, rheological and functional properties of ultrasonic treated xanthan gums. Int. J. Biol. Macromol., 246, 125650. doi: 10.1016/j.ijbiomac.2023.125650
[4] Nor Hayati, I., Wai Ching, C., & Rozaini, M.Z.H. (2016). Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloid, 53, 199-208. doi: 10.1016/j.foodhyd.2015.04.032
[5] Hayta, M., Dogan, M., & Aslan Türker, D. (2020). Rheology and microstructure of galactomannan–xanthan gum systems at different pH values. J. Food Process Eng., 43, e13573. doi: 10.1111/jfpe.13573
[6] Salehi, F., Haseli, A., & Roustaei, A. (2022). Coating of zucchini slices with Balangu, Basil, and Wild sage seeds gums to improve the frying properties. Eur. J. Lipid Sci. Technol., 124, 2100120. doi: 10.1002/ejlt.202100120
[7] Salehi, F., & Inanloodoghouz, M. (2023). Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. Int. J. Biol. Macromol., 253, 127828. doi: 10.1016/j.ijbiomac.2023.127828
[8] Razavi, S.M.A., Cui, S.W., Guo, Q., & Ding, H. (2014). Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloid, 35, 453-462. doi: 10.1016/j.foodhyd.2013.06.022
[9] Chahardoli, A., Jalilian, F., Memariani, Z., Farzaei, M.H., & Shokoohinia, Y. (2020) Chapter 26 - Analysis of organic acids, in: A. Sanches Silva, S.F. Nabavi, M. Saeedi, S.M. Nabavi (Eds.) Recent advances in natural products analysis, Elsevier, pp. 767-823.
[10] Wang, J., Wu, Z., & Wang, H. (2022). Combination of ultrasound-peracetic acid washing and ultrasound-assisted aerosolized ascorbic acid: A novel rinsing-free disinfection method that improves the antibacterial and antioxidant activities in cherry tomato. Ultrason. Sonochem., 86, 106001. doi: 10.1016/j.ultsonch.2022.106001
[11] Anyasi, T.A., Jideani, A.I.O., & McHau, G.R.A. (2015). Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem., 172, 515-522. doi: 10.1016/j.foodchem.2014.09.120
[12] Goff, H.D., & Guo, Q. (2019) The role of hydrocolloids in the development of food structure, in: F. Spyropoulos, A. Lazidis, I. Norton (Eds.) Handbook of Food Structure Development, The Royal Society of Chemistry, pp. 1-28.
[13] Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloid, 14, 417-424. doi: 10.1016/S0268-005X(00)00015-1
[14] Brenelli, S., Campos, S., & Saad, M. (1997). Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects. Braz. J. Med. Biol. Res., 30, 1437-1440. doi: 10.1590/S0100-879X1997001200009
[15] Salehi, F., Samary, K., & Tashakori, M. (2024). Influence of organic acids on the viscosity and rheological behavior of guar gum solution. Results Eng., 22, 102307. doi: 10.1016/j.rineng.2024.102307
[16] Capitani, M.I., Corzo-Rios, L.J., Chel-Guerrero, L.A., Betancur-Ancona, D.A., Nolasco, S.M., & Tomás, M.C. (2015). Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng., 149, 70-77. doi: 10.1016/j.jfoodeng.2014.09.043
[17] Safdar, B., Pang, Z., Liu, X., Rashid, M.T., & Jatoi, M.A. (2023). Structural characterization, physicochemical and rheological characteristics of flaxseed gum in comparison with gum Arabic and xanthan gum. J. Food Meas. Charact., 17, 2193-2203. doi: 10.1007/s11694-022-01750-2
[18] Wang, Q., Ellis, P.R., & Ross-Murphy, S.B. (2000). The stability of guar gum in an aqueous system under acidic conditions. Food Hydrocolloid, 14, 129-134. doi: 10.1016/S0268-005X(99)00058-2
[19] Salehi, F., & Inanloodoghouz, M. (2024). Effects of ultrasonic intensity and time on rheological properties of different concentrations of xanthan gum solution. Int. J. Biol. Macromol., 263, 130456. doi: 10.1016/j.ijbiomac.2024.130456
[20] Jo, W., Bak, J.H., & Yoo, B. (2018). Rheological characterizations of concentrated binary gum mixtures with xanthan gum and galactomannans. Int. J. Biol. Macromol., 114, 263-269. doi: 10.1016/j.ijbiomac.2018.03.105
[21] Duan, W., Huang, Y., Xiao, J., Zhang, Y., & Tang, Y. (2020). Determination of free amino acids, organic acids, and nucleotides in 29 elegant spices. Food Sci. Nutr., 8, 3777-3792. doi: 10.1002/fsn3.1667
[22] Kechinski, C.P., Schumacher, A.B., Marczak, L.D.F., Tessaro, I.C., & Cardozo, N.S.M. (2011). Rheological behavior of blueberry (Vaccinium ashei) purees containing xanthan gum and fructose as ingredients. Food Hydrocolloid, 25, 299-306. doi: 10.1016/j.foodhyd.2010.06.007
[23] Salehi, F., Tashakori, M., & Samary, K. (2024). Comparison of four rheological models for estimating viscosity and rheological parameters of microwave treated Basil seed gum. Scientific Reports, 14, 15493. doi: 10.1038/s41598-024-66690-x
[24] Smith, J., & Hong-Shum, L. (2003) Tartaric Acid, in: Food Additives Data Book, pp. 70-74.
[25] Kumar, Y., Roy, S., Devra, A., Dhiman, A., & Prabhakar, P.K. (2021). Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT, 149, 111632. doi: 10.1016/j.lwt.2021.111632
[26] Li, X., Fang, Y., Zhang, H., Nishinari, K., Al-Assaf, S., & Phillips, G.O. (2011). Rheological properties of gum arabic solution: From Newtonianism to thixotropy. Food Hydrocolloid, 25, 293-298. doi: 10.1016/j.foodhyd.2010.06.006