Investigation of the effect factors of atmospheric cold plasma of dielectric barrier discharge on Salmonella enterica serovar Enteritidis inactivation

Document Type : Research Article

Authors

1 Biosystems Engineering Dept. Faculty of Agriculture, Tarbiat Modares University,

2 Professor of Biosystems Engineering Dept. Faculty of Agriculture, Tarbiat Modares University,

3 Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

4 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

5 d Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

Abstract

More than half of foodborne illnesses are attributed to pathogenic bacteria, posing considerable health and economic dangers. Salmonella enterica serovar Enteritidis (SESE) is a prevalent bacterial pathogen responsible for a higher number of hospitalizations and fatalities compared to other bacteria. Non-thermal plasma, an innovative decontamination technique, exhibits the potential to serve as an intervention strategy for food safety. The study aimed to explore the possibility of deactivating SESE through a brief industrial treatment utilizing non-thermal atmospheric cold plasma of dielectric barrier discharge (DBD) devices. To assess the reduction of SESE, air was used as the process gas under different experimental circumstances, with Petridishes containing an initial concentration of 107 CFU/mL. Emission spectroscopy was employed to monitor the key factors of plasma deactivation, namely ultraviolet radiation and reactive species. The application of the DBD cold plasma device resulted in a decrease in SESE concentration by over 7 log CFU/mL following a 60-second treatment. Moreover, scanning electron microscopy revealed that atmospheric cold plasma treatment caused significant physical damage to the cells.

Graphical Abstract

Investigation of the effect factors of atmospheric cold plasma of dielectric barrier discharge on Salmonella enterica serovar Enteritidis inactivation

Highlights

  • Examining the potential for deactivating Salmonella enterica serotype Enteritidis (SE) utilizing the industrial dielectric barrier discharge (DBD) at non-thermal atmospheric pressure with air as the process gas
  • Reduction of SE concentration more than 7 log CFU/mL after 60 s treatment by dielectric barrier discharge atmospheric pressure cold plasma (DBD ACP) device
  • Optical emission spectroscopy (OES) to monitor the key factors of plasma inactivation
  • The utilization of a scanning electron microscope (SEM) revealed that the application of DBD ACP results in considerable physical harm to the cellular structures.

Keywords

Main Subjects


[1] Raybaudi‐Massilia, R. M., Mosqueda‐Melgar, J., Soliva‐Fortuny, R., & Martín‐Belloso, O. (2009).
Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and
alternative natural antimicrobials. CRFSFS., 8(3), 157-180. doi: org/10.1111/j.1541-4337.2009.00076.x.
[2] Subramanian, A., Harper, W. J., & Rodriguez‐Saona, L. E. (2009). Rapid prediction of composition and
flavor quality of cheddar cheese using ATR–FTIR spectroscopy. J. Food Sci., 74(3), C292-C297. doi:
org/10.1111/j.1750-3841.2009.01111.x.
[3] Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J.L., Griffin,
P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis., 17(1),
7. doi: org/10.3201/eid1701.p11101.
[4] Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination
technology in the food industry. Trends Food Sci., 80, 93-103. doi: org/10.1016/j.tifs.2018.07.014.
[5] Turtoi, M. and Borda, D., (2014). Decontamination of egg shells using ultraviolet light treatment. J.
World's Poult., 70(2), pp.265-278. doi: org/10.1017/S0043933914000282.
[6] Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W. B., & Schlüter, O. (2014). Non-thermal
atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on
perishable fresh produce. IFSET., 22, 147-157. doi: org/10.1016/J.IFSET.2014.01.011.
[7] Wan, Z., Chen, Y., Pankaj, S. K., & Keener, K. M. (2017). High voltage atmospheric cold plasma treatment
of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. LWT - Food
Sci. Technol., 76, 124-130. doi: org/10.1016/J.LWT.2016.10.051.
[8] Hernández-Torres, C. J., Reyes-Acosta, Y. K., Chávez-González, M. L., Dávila-Medina, M. D., Kumar
Verma, D., Martínez-Hernández, J. L., Narro-Céspedes, R. I., & Aguilar, C. N. (2022). Recent trends and
technological development in plasma as an emerging and promising technology for food biosystems. Saudi J.
Biol. Sci., 29, 1957–1980. doi: org/10.1016/j.sjbs.2021.12.023.
[9] Abdoli, B., Khoshtaghaza, M. H., Ghomi, H., Torshizi, M. A. K., Mehdizadeh, S. A., Pishkar, G., & Dunn, I.
C. (2024). Cold atmospheric pressure air plasma jet disinfection of table eggs: Inactivation of Salmonella
enterica, cuticle integrity and egg quality. Int. J. Food Microbiol. 410. doi:
org/10.1016/j.ijfoodmicro.2023.110474.
[10] Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E., & Guarnieri, A. (2010).
Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng., 100(1),
125–132. doi: org/10.1016/j.jfoodeng.2010.03.036.
[11] Marzdashty, H. R. G., Safa, N. N., & Golghand, M. R. (2017). U.S. Patent Application No. 15/409,457.
patents.google.com/patent/US20170127506A1/en (Accessed: 3 June 2022).
[12] Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2021). Argon and nitrogen cold plasma
effects on wheat germ lipolytic enzymes: Comparison to thermal treatment. Food Chem., 346, 128974. doi:
org/10.1016/j.foodchem.2020.128974.
[13] Rezaei, S., Ebadi, M. T., Ghobadian, B., & Ghomi, H. (2021). Optimization of DBD-Plasma assisted hydro-
distillation for essential oil extraction of fennel (Foeniculum vulgare Mill.) seed and spearmint (Mentha
spicata L.) leaf. JMAPS., 24, 100300. doi: org/10.1016/j.jarmap.2021.100300.
[14] Dasan, B. G., Yildirim, T., & Boyaci, I. H. (2018). Surface decontamination of eggshells by using non-
thermal atmospheric plasma. Int. J. Food Microbiol., 266, 267-273. doi:
org/10.1016/j.ijfoodmicro.2017.12.021.
[15] Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. J
Infectiology & Epidemiol., 38(6), 732-749. doi: org/10.1017/S002217240001158X.
[16] Mattick, K. L., Jørgensen, F., Wang, P., Pound, J., Vandeven, M. H., Ward, L. R., Legan, J. D., Lappin-
Scott, H.M & Humphrey, T. J. (2001). Effect of challenge temperature and solute type on heat tolerance of
Salmonella serovars at low water activity. AEM., 67(9), 4128-4136. doi: org/10.1128/AEM.67.9.4128-
4136.2001.
[17] Al-Rawaf, A. F., Fuliful, F. K., Khalaf, M. K., & Oudah, H. K. (2018). Studying the non-thermal plasma jet
characteristics and application on bacterial decontamination. J. Theor. Appl. Phys., 12(1), 45-51. doi:
org/10.1007/s40094-018-0279-y.
[18] Smadi, H., Sargeant, J. M., Shannon, H. S., & Raina, P. (2012). Growth and inactivation of Salmonella at
low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media:
mixed effect meta-analysis. J. Epidemiol. Glob. Health., 2(4), 165-179. doi: org/10.1016/j.jegh.2012.12.001.
[19] Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma - A tool for
decontamination and disinfection. Biotechnol. Adv., 33(6), 1108–1119. doi:
org/10.1016/j.biotechadv.2015.01.002.
[20] Lin, C. M., Herianto, S., Syu, S. M., Song, C. H., Chen, H. L., & Hou, C. Y. (2021). Applying a large-scale
device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory
characteristics. LWT, 142, 111067. doi: org/10.1016/j.lwt.2021.111067.