[1] Raybaudi‐Massilia, R. M., Mosqueda‐Melgar, J., Soliva‐Fortuny, R., & Martín‐Belloso, O. (2009).
Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and
alternative natural antimicrobials. CRFSFS., 8(3), 157-180. doi: org/10.1111/j.1541-4337.2009.00076.x.
[2] Subramanian, A., Harper, W. J., & Rodriguez‐Saona, L. E. (2009). Rapid prediction of composition and
flavor quality of cheddar cheese using ATR–FTIR spectroscopy. J. Food Sci., 74(3), C292-C297. doi:
org/10.1111/j.1750-3841.2009.01111.x.
[3] Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J.L., Griffin,
P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis., 17(1),
7. doi: org/10.3201/eid1701.p11101.
[4] Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination
technology in the food industry. Trends Food Sci., 80, 93-103. doi: org/10.1016/j.tifs.2018.07.014.
[5] Turtoi, M. and Borda, D., (2014). Decontamination of egg shells using ultraviolet light treatment. J.
World's Poult., 70(2), pp.265-278. doi: org/10.1017/S0043933914000282.
[6] Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W. B., & Schlüter, O. (2014). Non-thermal
atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on
perishable fresh produce. IFSET., 22, 147-157. doi: org/10.1016/J.IFSET.2014.01.011.
[7] Wan, Z., Chen, Y., Pankaj, S. K., & Keener, K. M. (2017). High voltage atmospheric cold plasma treatment
of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. LWT - Food
Sci. Technol., 76, 124-130. doi: org/10.1016/J.LWT.2016.10.051.
[8] Hernández-Torres, C. J., Reyes-Acosta, Y. K., Chávez-González, M. L., Dávila-Medina, M. D., Kumar
Verma, D., Martínez-Hernández, J. L., Narro-Céspedes, R. I., & Aguilar, C. N. (2022). Recent trends and
technological development in plasma as an emerging and promising technology for food biosystems. Saudi J.
Biol. Sci., 29, 1957–1980. doi: org/10.1016/j.sjbs.2021.12.023.
[9] Abdoli, B., Khoshtaghaza, M. H., Ghomi, H., Torshizi, M. A. K., Mehdizadeh, S. A., Pishkar, G., & Dunn, I.
C. (2024). Cold atmospheric pressure air plasma jet disinfection of table eggs: Inactivation of Salmonella
enterica, cuticle integrity and egg quality. Int. J. Food Microbiol. 410. doi:
org/10.1016/j.ijfoodmicro.2023.110474.
[10] Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E., & Guarnieri, A. (2010).
Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng., 100(1),
125–132. doi: org/10.1016/j.jfoodeng.2010.03.036.
[11] Marzdashty, H. R. G., Safa, N. N., & Golghand, M. R. (2017). U.S. Patent Application No. 15/409,457.
patents.google.com/patent/US20170127506A1/en (Accessed: 3 June 2022).
[12] Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2021). Argon and nitrogen cold plasma
effects on wheat germ lipolytic enzymes: Comparison to thermal treatment. Food Chem., 346, 128974. doi:
org/10.1016/j.foodchem.2020.128974.
[13] Rezaei, S., Ebadi, M. T., Ghobadian, B., & Ghomi, H. (2021). Optimization of DBD-Plasma assisted hydro-
distillation for essential oil extraction of fennel (Foeniculum vulgare Mill.) seed and spearmint (Mentha
spicata L.) leaf. JMAPS., 24, 100300. doi: org/10.1016/j.jarmap.2021.100300.
[14] Dasan, B. G., Yildirim, T., & Boyaci, I. H. (2018). Surface decontamination of eggshells by using non-
thermal atmospheric plasma. Int. J. Food Microbiol., 266, 267-273. doi:
org/10.1016/j.ijfoodmicro.2017.12.021.
[15] Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. J
Infectiology & Epidemiol., 38(6), 732-749. doi: org/10.1017/S002217240001158X.
[16] Mattick, K. L., Jørgensen, F., Wang, P., Pound, J., Vandeven, M. H., Ward, L. R., Legan, J. D., Lappin-
Scott, H.M & Humphrey, T. J. (2001). Effect of challenge temperature and solute type on heat tolerance of
Salmonella serovars at low water activity. AEM., 67(9), 4128-4136. doi: org/10.1128/AEM.67.9.4128-
4136.2001.
[17] Al-Rawaf, A. F., Fuliful, F. K., Khalaf, M. K., & Oudah, H. K. (2018). Studying the non-thermal plasma jet
characteristics and application on bacterial decontamination. J. Theor. Appl. Phys., 12(1), 45-51. doi:
org/10.1007/s40094-018-0279-y.
[18] Smadi, H., Sargeant, J. M., Shannon, H. S., & Raina, P. (2012). Growth and inactivation of Salmonella at
low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media:
mixed effect meta-analysis. J. Epidemiol. Glob. Health., 2(4), 165-179. doi: org/10.1016/j.jegh.2012.12.001.
[19] Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma - A tool for
decontamination and disinfection. Biotechnol. Adv., 33(6), 1108–1119. doi:
org/10.1016/j.biotechadv.2015.01.002.
[20] Lin, C. M., Herianto, S., Syu, S. M., Song, C. H., Chen, H. L., & Hou, C. Y. (2021). Applying a large-scale
device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory
characteristics. LWT, 142, 111067. doi: org/10.1016/j.lwt.2021.111067.