[1] Salarbashi, D., & Tafaghodi, M. (2018). An update on physicochemical and functional properties of newly seed gums. Int. J. Biol. Macromol., 119, 1240-1247. doi: 10.1016/j.ijbiomac.2018.06.161
[2] Salehi, F., & Inanloodoghouz, M. (2023). Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. Int. J. Biol. Macromol., 253, 127828. doi: 10.1016/j.ijbiomac.2023.127828
[3] Sadeghi-Varkani, A., Emam-Djomeh, Z., & Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. Int. J. Biol. Macromol., 108, 1110-1119. doi: 10.1016/j.ijbiomac.2017.11.029
[4] Hejrani, T., Sheikholeslami, Z., Mortazavi, S.A., Karimi, M., & Elhamirad, A.H. (2019). Impact of the Basil and Balangu gums on physicochemical properties of part baked frozen Barbari bread. Inf. Process. Agric., 6, 407-413. doi: 10.1016/j.inpa.2018.11.004
[5] Tao, Y., Yan, B., Zhang, N., Wang, M., Zhao, J., Zhang, H., & Fan, D. (2022). Do non-thermal effects exist in microwave heating of glucose aqueous solutions? Evidence from molecular dynamics simulations. Food Chem., 375, 131677. doi: 10.1016/j.foodchem.2021.131677
[6] Cao, H., Fan, D., Jiao, X., Huang, J., Zhao, J., Yan, B., Zhou, W., Zhang, W., & Zhang, H. (2018). Heating surimi products using microwave combined with steam methods: Study on energy saving and quality. Innov. Food Sci. Emerg. Technol, 47, 231-240. doi: 10.1016/j.ifset.2018.03.003
[7] Salehi, F., Goharpour, K., & Razavi Kamran, H. (2024). Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results Eng., 21, 101690. doi: 10.1016/j.rineng.2023.101690
[8] An, N.-n., Li, D., Wang, L.-j., & Wang, Y. (2023). Microwave irradiation of corn kernels: Effects on structural, thermal, functional and rheological properties of corn flour. Food Hydrocolloid, 143, 108939. doi: 10.1016/j.foodhyd.2023.108939
[9] Yan, B., Chen, T., Tao, Y., Zhang, N., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2023). Conformation and hydration property of low-acetyl gellan gum under microwave irradiation: Experiments and molecular dynamics simulations. Food Hydrocolloid, 145, 109140. doi: 10.1016/j.foodhyd.2023.109140
[10] Chen, T., Wu, Y., Liu, F., Zhang, N., Yan, B., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2022). Unusual gelation behavior of low-acetyl gellan under microwave field: Changes in rheological and hydration properties. Carbohydr. Polym., 296, 119930. doi: 10.1016/j.carbpol.2022.119930
[11] Ramírez-Brewer, D., Quintana, S.E., & García-Zapateiro, L.A. (2023). Effect of microwave treatment on technological, physicochemical, rheological and microstructural properties of mango (Mangifera indica) kernel starch variety Tommy and Sugar. LWT, 187, 115311. doi: 10.1016/j.lwt.2023.115311
[12] Salehi, F., Inanloodoghouz, M., & Ghazvineh, S. (2023). Influence of microwave pretreatment on the total phenolics, antioxidant activity, moisture diffusivity, and rehydration rate of dried sweet cherry. Food Sci. Nutr., 11, 7870-7876. doi: 10.1002/FSN3.3703
[13] Salehi, F., Razavi Kamran, H., & Goharpour, K. (2023). Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process. Ultrason. Sonochem., 99, 106591. doi: 10.1016/j.ultsonch.2023.106591
[14] Salehi, F., & Inanloodoghouz, M. (2024). Effects of ultrasonic intensity and time on rheological properties of different concentrations of xanthan gum solution. Int. J. Biol. Macromol., 263, 130456. doi: 10.1016/j.ijbiomac.2024.130456
[15] Luo, Z., He, X., Fu, X., Luo, F., & Gao, Q. (2006). Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch‐Stärke, 58, 468-474. doi: 10.1002/star.200600498
[16] González-Mendoza, M.E., Martínez-Bustos, F., Castaño-Tostado, E., & Amaya-Llano, S.L. (2022). Effect of microwave irradiation on acid hydrolysis of faba bean starch: physicochemical changes of the starch granules. Molecules, 27, 3528. doi: 10.3390/molecules27113528
[17] Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., & Yonghong, M. (1996). Rheological models for xanthan gum. J. Food Eng., 27, 203-209. doi: 10.1016/0260-8774(94)00092-1
[18] Song, K.-W., Kim, Y.-S., & Chang, G.-S. (2006). Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 7, 129-138.
[19] Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Res. Int., 52, 243-261. doi: 10.1016/j.foodres.2013.02.033
[20] Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., & Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloid, 69, 473-482. doi: 10.1016/j.foodhyd.2017.03.011
[21] Zhong, Y., Tian, Y., Liu, X., Ding, L., Kirkensgaard, J.J.K., Hebelstrup, K., Putaux, J.-L., & Blennow, A. (2021). Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocolloid, 119, 106856. doi: 10.1016/j.foodhyd.2021.106856
[22] Kumar, Y., Roy, S., Devra, A., Dhiman, A., & Prabhakar, P.K. (2021). Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT, 149, 111632. doi: 10.1016/j.lwt.2021.111632