[1] Yahia, E.M., Maldonado Celis, M.E., & Svendsen, M. ( 2017). The contribution of fruit and vegetable consumption to human health. Fruit and Vegetable Phytochemicals: Chemistry and Human Health. (2nd Edition). p. 1-52. https://doi.org/10.1002/9781119158042.ch1.
[2] Chhikara, N., Kushwaha, K.,
Sharma, P.
Gat, Y., &
Panghal, A. ( 2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review.
F. chemi.., 272: p. 192-200. https://doi.org/10.1016/j.foodchem.2018.08.022.
[3] Akan, S., Tuna Gunes, N., & Erkan, M. ( 2021). Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J. of F. Proce. & Preser., 45(10): p. e15781. https://doi.org/10.1111/jfpp.15781.
[4] Seremet, L., Nistor, OV.,
Andronoiu, DG., &
Mocanu, GD. (2020). Development of several hybrid drying methods used to obtain red beetroot powder
. F. chemi., 310: p. 125637 https://doi.org/10.1016/j.foodchem.2019.125637.
[5] Ng, M.L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. Lwt., 88: p. 80-86. https://doi.org/10.1016/j.lwt.2017.08.032.
[6] Sucu, C., & Turp, G.Y. (2018). The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science., 140: p https://doi.org/10.1016/j.meatsci.2018.03.012. 166-158.
[7] Caliskan, G., & Dirim, S.N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder technology., 287: p. 308-314 https://doi.org/10.1016/j.powtec.2015.10.019.
[8] Hosseini, S.K. (2021). Preparation of barberry powder produced by foam mat method and the effect of dryer temperature on its properties. Inno. F. Tech., 8(2): p. 253-272. [In persion]
[9] Wilson, R.A.,
Kadam, DM., Chadha, S.,
Grewal, MK., &
Sharma., M. ( 2014). Evaluation of
Physical and Chemical Properties of Foam‐Mat Dried Mango (M angifera indica) Powder during Storage.
J. of F. Proces & Preser., 38(4): p. 1866-1874. https://doi.org/10.1111/jfpp.12158.
[10] Malik, M., & Sharma, A. (2019). Optimisation of foam‐mat drying of yoghurt and properties of powdered yoghurt. Inter. J. of Dairy Techno, 72(3): p. 381-387. https://doi.org/10.1111/1471-0307.12594.
[11] Yüksel, A.N. (2021). Development of yoghurt powder using microwave-assisted foam-mat drying. J. of F. Sc.i & Techno., 58(7): p. 2834-2841. https://doi.org/10.1007/s13197-021-05035-2.
[12] GülÅŸah, Ã., & Yüksel, A.N. (2020). THE FAOM-MAT CONVECTIVE AND MICROWAVE DRIED AVOCADO POWDER: PHYSICAL, FUNCTIONAL, AND POWDER PROPERTIES: FOAM-MAT CONVECTIVE AND MICROWAVE DRIED AVOCADO POWDER. Latin American Applied Research-An international journal. 50(4): p. 291-297. https://doi.org/10.52292/j.laar.2020.486.
[13] Çalışkan Koç, G.,
Yüksel, AN.,&
Baş, E.,&
Erdoğan, SL. (2020).
J of F Pro Eng,. 43(11): p. e13516https://doi.org/10.1111/jfpe.13516.
[14] Shameena Beegum, P.,
Manikantan, MR ., Anju, KB., Vinija, V.,
Pandiselvam, R., & Jayashekhar., S. (2022). Foam mat drying technique in coconut milk: Effect of additives on foaming and powder properties and its economic analysis
. J. of F. Proce. & Preser., 46(11): p. e17122. https://doi.org/10.1111/jfpp.17122.
[15] Ali-Haïmoud, Y. & Kamionkowski., M. (2017). Cosmic microwave background limits on accreting primordial black holes. Physical Review D., 95(4): p. 043534. https://doi.org/10.1103/PhysRevD.95.043534.
[16] Gye, M.C. & Park., C.J. (2012). Effect of electromagnetic field exposure on the reproductive system. Clinical and experimental reproductive medicine., 39(1): p. 1. https://doi.org/10.5653%2Fcerm.2012.39.1.1.
[17] Norambuena-Contreras, J. & Gonzalez-Torre., I. (2017). Influence of the microwave heating time on the self-healing properties of asphalt mixtures. Applied Sciences., 7(10): p. 176. https://doi.org/10.3390/app7101076
[18] Yüksel, A.N. (2020). MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. Gıda., 45(6): p. 1134-1142. https://doi.org/10.15237/gida.GD20088.
[19] Sun, Y., Zhang, Y., Xu, W., & Zheng., X. (2020). Analysis of the anthocyanin degradation in blue honeysuckle berry under microwave assisted foam-mat drying. Foods., 9(4): p. 397 https://doi.org/10.3390/foods9040397.
[20] Benković, M., Pižeta, M.,
Tušek, AJ.,
Jurina, T., &
Kljusurić, JG. (2019). Optimization of the foam mat drying process for production of cocoa powder enriched with peppermint extract
. LWT., 115: p. 108440 https://doi.org/10.1016/j.lwt.2019.108440.
[21] Dehghannya, J., Pourahmad, M., &
Ghanbarzadeh, B. (2019). Heat and mass transfer enhancement during foam-mat drying process of lime juice: Impact of convective hot air temperature.
Inter. J. of Ther. Sci., 135: p. 30-43. https://doi.org/10.1016/j.ijthermalsci.2018.07.023.[In persion]
[22] Franco, T.S.,
Perussello CA., &
Ellendersen, LN. (2016). Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder.
LWT-F. Sci & Techno., 66: p. 503-513. https://doi.org/10.1016/j.lwt.2015.11.009.
[23] Najafian, N., Aarabi, A., & Nezamzadeh-Ejhieh, A. (2022). Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum. Inter. J.l of Bio. Macro.., 223: p. 1257-1267 https://doi.org/10.1016/j.ijbiomac.2022.11.056.[In persion]
[24] Qadri, O.S., & Srivastava, A.K. (2017). Microwave‐assisted foam mat drying of guava pulp: Drying kinetics and effect on quality attributes. J.l of f. pro. engi., 40(1): p. e12295. https://doi.org/10.1111/jfpe.12295.
[25] Sanchez-Gonzalez, N., & Jaime-Fonseca, MR. (2013). Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J. of Agri. & f. Chemi., 61(49): p. 11995-12004. https://doi.org/10.1021/jf401705h.
[26] Darniadi, S.,
Ifie, I.,
Luna, P.,
Ho, P., &
Murray, BS. (2020). Foam-mat freeze-drying of blueberry juice by using trehalose-β-lactoglobulin and trehalose-bovine serum albumin as matrices.
F & Bio Tech., 13: p. 988-997. https://doi.org/10.1007/s11947-020-02445-6.
[27] Ifie, I.,
Marshall, LJ., &
Ho, P (2016). Hibiscus sabdariffa (Roselle) extracts and wine
: Phytochemical profile, physicochemical properties, and carbohydrase inhibition.
J.l of agri & f. chemi., 64(24): p. 4921-4931. https://doi.org/10.1021/acs.jafc.6b01246.
[28] Haji Ali Asghari, M. & Sharifi, A. (2022). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried Echium amoenum powder. Inno F Tech., 9(2): p. 149-165 https://doi.org/10.22104/jift.2021.5253.2073.[In persion]
[29] Seerangurayar, T., &
Manickavasagan, A. (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder.
Drying Technology., 36(11): p. 1292-1303. https://doi.org/10.1080/07373937.2017.1400557.
[30] Abd El-Salam, E.A. & Morsy, N.F. (2019). Optimization of the extraction of polyphenols and antioxidant activity from Malva parviflora L. leaves using Box–Behnken design. Pre. Bioch. & Biotech., 49(9): p. 876-883. https://doi.org/10.1080/10826068.2019.1633667.
[31] Caparino, O.,
Tang, J.,
Nindo, CI., &
Sablani, SS. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder
. J & f Eng., 111(1): p. 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010.
[32] Chaux-Gutiérrez, A.M.,
Santos, AB.,
Granda-Restrepo, DM., &
Mauro, MA. (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality
. Drying Technology., 35(5): p. 631-641. https://doi.org/10.1080/07373937.2016.1201486.
[33] Hamzeh, S.,
Motamedzadegan, A.,
Shahidi, SA.,
Ahmadi, M., &
Regenstein, JM. (2019). Effects of drying condition on physico-chemical properties of foam-mat dried shrimp powder.
J.l of Aquatic F. Pro. Techno., 28(7): p. 794-805. https://doi.org/10.1080/10498850.2019.1640817. [In persion]
[34] Khashayary, S. & Aarabi, A. (2021). Evaluation of physico-mechanical and antifungal properties of gluten-based film incorporated with vanillin, salicylic acid, and montmorillonite (Cloisite 15A). F.& Bio Techno., 14(4): p. 665-678. https://doi.org/10.1007/s11947-021-02598-y. [In pertion]
[35] Franco, T. S., Ellendersen, L. N., Fattori, D., Granato, D., & Masson, M. L. (2015). Influence of the addition of ovalbumin and emulsifier on the physical properties and stability of yacon (Smallanthus sonchifolius) juice foams prepared for foam mat drying process. F. & bio. techno, 8, 2012-2026.
[36] Abbasi, E. & Azizpour, M. (2016). Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT-F. Sci. & Techno., 68: p. 105-110 https://doi.org/10.1016/j.lwt.2015.12.004. [In persion]
[37] Azizpour, M., Mohebbi, M. & Khodaparast M.H.H. (2016). Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder. Inno. f. sci. & emer. tech., 34: p. 122-126. https://doi.org/10.1016/j.ifset.2016.01.002. [In persion]
[38] Sharada, S. (2013). Studies on effect of various operating parameters & foaming agents-Drying of fruits and vegetables. Inter.l J. of Modern En. Research, 3(3), 1512-1519.
[39] Schaczenski, J., & Michels, H. (2010). National Sustainable Agriculture Information Service.
[40] Xiong, X.,
Ho, MT.,
Bhandari, B., &
Bansal, N. (2020). Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios.
Inter. Dairy J., 109: p. 104758 https://doi.org/10.1016/j.idairyj.2020.104758.
[41] Marinova, K. G., Basheva, E. S., Nenova, B., Temelska, M., Mirarefi, A. Y., Campbell, B., & Ivanov, I. B. (2009). Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids, 23(7), 1864-1876.
[42] Shaari, N.A.,
Sulaiman, R.,
Rahman, RA., &
Bakar, J. (2018). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration
. J. of F. pro& Pres., 42(2): p. e13467. https://doi.org/10.1111/jfpp.13467.
[43] Gengatharan, A., Dykes, G.A. & Choo, W.S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-F. Sci & Techno., (2)64: p. 645-649. https://doi.org/10.1016/j.lwt.2015.06.052.
[44] Slavov, A., Karagyozov, V.,
Denev, P., Kratchanova, M., & Kratchanov, C. (2013). Antioxidant activity of red beet juices obtained after microwave and thermal pretreatments.
Czech J. of F. Sci., 31(2): p. 139-147. https://doi.org/10.17221/61/2012-CJFS.
[45] Ravichandran, K.,
Saw, NMMT.,
Mohdaly, AAA. (2013). Impact of processing of red beet
on betalain content and antioxidant activity.
F. res. inter.,50(2): p. 670-675. https://doi.org/10.1016/j.foodres.2011.07.002.
[46] Shofinita, D., Fawwaz, M., & Achmadi, A.B. (2023). Betalain extracts: Drying techniques, encapsulation, and application in food industry. Food Frontiers., https://doi.org/10.1002/fft2.227.
[47] Dehghannya, J., Pourahmad, M., &
Ghanbarzadeh, B. (2018). Heat and mass transfer modeling during foam-mat drying of lime juice as affected by different ovalbumin concentrations.
J. of. F. Eng., 238: p. 164-177 https://doi.org/10.1016/j.jfoodeng.2018.06.014. [In persion].
[48] Alami, M., Shirmohammadi, M., Maqsoodlou, Y., & Khameri, M. (2022). The effect of spray drying conditions on the physical, functional and production efficiency of our water powder. In. in f. sci & techno., 14(2): p. 93-108. https://doi.org/10.30495/jfst.2020.1867058.1509[In Persian].
[49] Anandharamakrishnan, C., Rielly, C., & Stapley, A. (2007). Effects of process variables on the denaturation of whey proteins during spray drying. Drying technology., 25(5): p. 799-807. https://doi.org/10.1080/07373930701370175.
[50] Anandharamakrishnan, C., Rielly, C.D., & Stapley, A.G. (2008). Loss of solubility of α-lactalbumin and β-lactoglobulin during the spray drying of whey proteins. LWT-F. Sci & Tech., 41(2): p. 270-277. https://doi.org/10.1016/j.lwt.2007.03.004.
[51] Pieganbar Doost, S.H., & Sarabandi, KH. (2017). Effect of spray drying conditions on physicochemical, functional and production efficiency of malt extract powder. F. Ind. Res., 27(2): p. 75-90.[In Persian].
[52] Elshiemy, S., Soliman, IA., Abdelaleem, MA., &
Elbassiony, KRA. (2019). Antioxidant and Antibacterial Activity of Gamma Irradiated Red
Beet (Beta Vulgaris L.) Leaves and Roots.
J. of Nuclear Tech. in appl. sci., 7: p. 33-50. https://www.researchgate.net/publication/330181081.
[53] Dias, R., Oliveira, H., Fernandes, I.,
Simal-Gandara, J., & Perez-Gregorio, R. (2021). Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics
. Critical Revi. in f. sci. and nutr., 61(7): p. 1130-1151. https://doi.org/10.1080/10408398.2020.1754162.
[54] Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. J. F. Bio., 44(9): p. e13394 .https://doi.org/10.1111/jfbc.13394.
[55] Ghanem, N.,
Mihoubi, D., & Kechaou, N. (2012). Microwave dehydration of
three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content.
Indu. Cro. & Pro., 40: p. 167-177. https://doi.org/10.1016/j.indcrop.2012.03.009. [In persion]
[56] Behgar, M., Ghasemi, S.,
Naserian, A., & Borzoie, A. (2011). Gamma radiation effects on phenolics, antioxidants activity
and in vitro digestion of pistachio (Pistachia vera) hull.
Radi. Physics& Chem., 80(9): p. 963-967. https://doi.org/10.1016/j.radphyschem.2011.04.016. [In persion]
[57] Kumari, N.,
Kumar, P., Mitra, D.,
Prasad, B.,
Tiwary, BN.,& Varshney, L. (2009). Effects of ionizing radiation on microbial decontamination, phenolic contents, and antioxidant properties of triphala.
J. of f. sci., 74(3): p. M109-M113. https://doi.org/10.1111/j.1750-3841.2009.01079.x.
[58] Brar, A.S.,
Kaur, P.,
Kaur, G., & Subramanian, J. (2020). Optimization of process parameters for foam-mat drying of peaches
. Inter. j. of fruit sci., 20(sup3): p. S1495-S1518 https://doi.org/10.1080/15538362.2020.1812017.
[59] Garau, M.C.,
Simal, S.,
Rossello, C.,
& Femenia, A. (2007). Effect of
air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products.
Food chemistry., 104(3): p. 1014-1024. https://doi.org/10.1016/j.foodchem.2009.04.066.
[60] Özcan, M.M.,
Al Juhaimi, F.,
Ahmed, IAM.,
Uslu, N.,
Babiker, EE.,
& Ghafoor, K. (2020). Effect of microwave and oven drying
processes on antioxidant activity, total phenol and phenolic compounds of kiwi and pepino fruits.
J. f. of sci & techno., 57: p. 233-242 https://doi.org/10.1007/s13197-019-04052-6.
[61] Ozcan-Sinir, G.,
Ozkan-Karabacak, A.,
Tamer, CE.,
& Copur, OU. (2018) The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica).
F. Sci. & Techno., 39: p. 475-484. https://doi.org/10.1590/fst.34417.
[62] Azizpour, M.,
Mohebbi, M., Hossein Haddad Khodaparast, M.,
& Varidi, M. (2014). Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus).
Drying Technology., 32(4): p. 374-384 https://doi.org/10.1080/07373937.2013.794829. [In persion].
[63] Franco, T.S.,
Ellendersen, LN., Fattori, D.,
Granato, D,. &
Masson, ML. (2015). Influence of the addition of ovalbumin and emulsifier on the physical properties and stability of yacon
(Smallanthus sonchifolius) juice foams prepared for foam mat drying process.
F & bio techno., 8: p. 2012-2026. DOI 10.1007/s11947-015-1553-5.
[64] Kanha, N., Regenstein, J.M. & Laokuldilok, T. (2022). Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray-and freeze-dried powders. Drying Technology., 40(3): p. 581-594. https://doi.org/10.1080/07373937.2020.1819824.
[65] Tomczyńska-Mleko, M,.
Kamysz, E.,
Sikorska, E., Puchalski, C., Mleko, S., Ozimek, L,. & Kowaluk, G. (2014). Changes of secondary structure and surface tension of whey protein isolate dispersions upon pH and temperature
.
Czech J. of F. Sci., 32(1): p. 82-89 https://doi.org/10.17221/326/2012-CJFS.