تولید پودر چغندر لبویی با استفاده از عوامل کف کننده مالتودکسترین و کنسانتره پروتئین شیر با روش خشک کردن کف پوشی در مایکروویو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی دانشگاه آزاد اسلامی واحدنجف آباد -نجف آباد-ایران

2 گروه علوم و صنایع غذایی- دانشگاه ازد اسلامی واحد شهرضا- شهرضا - ایران

3 گروه مکانیک بیوسیتم، دانشگاه شهید چمران اهواز

4 گروه علوم و صنایع غذایی ، دانشکده کشاورزی- دانشگاه جیرفت- جیرفت - ایران

چکیده

در این تحقیق، برخی ویژگی‌های کیفی، عملکردی و حسی پودر چغندر لبویی به روش خشک کردن کف پوشی با مایکروویو مورد بررسی قرار گرفت. اثر سه متغیر مستقل غلظت مالتودکسترین (MD) و غلظت کنسانتره پروتئین شیر (MPC) به عنوان ماده کف زا در محدوده غلظت (0تا10درصد) و شدت توان‌ مایکروویو در محدوده (400-800) وات بر برخی ویژگی‌های فیزیکی فوم و پودر شامل پایداری، رنگ، تخلخل، میزان رطوبت، بازده، ترکیبات فنولی، ظرفیت آنتی اکسیدانی، بتالائین کل تعیین شدند. شرایط بهینه فرآیند با استفاده از روش سطح پاسخ (RSM) تعیین شد. با افزایش مالتودکسترین در فوم، شاخصL*،b* P≤ 0.05)) افزایش یافت. محدوده تغییرات (482/21-21/12) L* و (44/10-753/4) b* متغیر بود. اما پارامتر تخلخل توده، روند کاهشی داشت (P≤ 0.05). مالتو دکسترین بر روی پایداری فوم بی اثر شد. در صورتی که با افزایش غلظت MPC در فوم، پایداری،تخلخل توده، پارامترهای رنگ L*،b* افزایش یافتند. نتایج حاصل از ارزیابی پودر نشان داد که با افزایش غلظت مالتودکسترین و MPC، بازده، و محتوای فنل کل افزایش (P≤ 0.01) و همچنین ظرفیت آنتی اکسیدانی در رقت های ppm 500 با افزایش غلظت مالتو دکسترین کاهش و با افزایش غلظت MPC افزایش یافت (P≤ 0.05). اثر متغیر‌ها بر بتالائین معنادار بود. محدوده تغییرات آن 333/86-676/217 بود. محتوای رطوبت در این ارزیابی رفتار معناداری از خود نشان نداد. بررسی نتایج نشان داد پودر دارای 10درصد مالتودکسترین و10 درصد MPC در توان 400 وات مایکروویو را می‌توان بعنوان نمونه بهینه معرفی نمود. تصاویر SEM نشان داد که نمونه بهینه دارای ذرات ریزتر و سطوح صاف، نرم تر و پوسته پوسته است. طیف FTIR از تیمار بهینه و کنترل شباهت های قابل توجهی نشان داد. تشدید و جابه‌جایی برخی پیک‌های جذبی الگوی طیف FTIR بر هم‌کنش گروه‌های عاملی آمید و کربونیل در نمونه کنترل را تأیید کرد، به طوری که کاهش تعداد گروه‌های آمیدی در نمونه شاهد بیشتر بود.

چکیده تصویری

تولید پودر چغندر لبویی با استفاده از عوامل کف کننده مالتودکسترین و کنسانتره پروتئین شیر با روش خشک کردن کف پوشی در مایکروویو

تازه های تحقیق

  • پودر ریشه چغندر قرمز با استفاده از روش خشک کردن کف به کمک مایکروویو تولید شد.
  • اثر پارامترهای فرآیند (مالتودکسترین و کنسانتره پروتئین شیر (MPC)) به عنوان عامل کف کننده مورد ارزیابی قرار گرفت.
  • برهمکنش های مولکولی در تشکیل فوم و ساختار پودر مورد بحث و تفسیر قرار گرفت.
  • شرایط بهینه فرآیند با استفاده از روش سطح پاسخ (RSM) تعیین شد.
  • طیف FTIR بهینه و کنترل برهمکنش گروههای عاملی گروههای آمیدی و کربونیل را در نمونه شاهد بالاتر از نمونه بهینه تایید کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Producing beetroot powder by using foaming agent maltodextrin and milk protein concentrate in foam mat-microwave drying method

نویسندگان [English]

  • Aazam Aarabi jeshvaghani 1
  • Shima Omidi 2
  • Hassan Zaki Dizaji 3
  • Fatemeh Shahdadi 4
1 Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad,Iran
2 Department of food sciene and technology, shahreza,, Islamic Azad University, shahreza, iran
3 Department of Biosystem Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Department of Food Science and Technology, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
چکیده [English]

Introduction: Beetroot (Beta vulgaris L.) is a good source of dietary fibers, minerals, vitamins, antioxidants, betalains and phenolic compounds. Drying is one of the oldest ways to preserve food and increase its shelf life. Drying with normal methods causes a lot of damage to the flavor and nutrients due to the long time of the drying process and high temperature. Drying with microwave can significantly remove these disadvantages. The use of microwaves in drying significantly reduces the process time and improves the reabsorption and shrinkage characteristics of the product. Foam \mat drying is a new method that takes place in a shorter and faster time than the traditional method of drying with hot air. This method is used to dry liquid or semi-liquid food such as fruit juice and fruit puree or vegetables. The subject of this research is to produce beetroot powder using the foammat method in order to improve the nutritional value and increase the shelf life.

Materials and methods: 15 treatments were defined using Design Expert version 11 software and considering three independent variables [maltodextrin (MD), milk protein concerate (MPC], microwave power). The foam produced from maltodextrin and MPC with the same concentration (0-10%) was dissolved in 100 ml of distilled water and then added to 200 g of chopped beet pulp and the mixture and prepared foam was spread in a special tray with a thickness of 1 cm. Drying operation was done in a microwave with power intensity (400-800). Then the produced powder of beetroot was evaluated in terms of some physicochemical characteristics and the responses of the treatments were analyzed by the response surface method (RSM) and the central composite design (CCD) and the optimal sample was obtained.

کلیدواژه‌ها [English]

  • Beetroot powder
  • Milk protein concentrate
  • Maltodextrin
  • Foam mat
  • Microwave
[1] Yahia, E.M., Maldonado Celis, M.E., & Svendsen, M. ( 2017). The contribution of fruit and vegetable consumption to human health. Fruit and Vegetable Phytochemicals: Chemistry and Human Health. (2nd Edition). p. 1-52. https://doi.org/10.1002/9781119158042.ch1.
[2] Chhikara, N., Kushwaha, K., Sharma, P. Gat, Y., &   Panghal, A. ( 2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. F. chemi.., 272: p. 192-200. https://doi.org/10.1016/j.foodchem.2018.08.022.
[3] Akan, S., Tuna Gunes, N., & Erkan, M. ( 2021). Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J. of F. Proce. & Preser., 45(10): p. e15781. https://doi.org/10.1111/jfpp.15781.
[4] Seremet, L., Nistor, OV.,  Andronoiu, DG., &  Mocanu, GD. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. F. chemi., 310: p. 125637 https://doi.org/10.1016/j.foodchem.2019.125637.
[5] Ng, M.L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. Lwt., 88: p. 80-86. https://doi.org/10.1016/j.lwt.2017.08.032.
[6] Sucu, C., & Turp, G.Y. (2018). The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science., 140: p https://doi.org/10.1016/j.meatsci.2018.03.012. 166-158.
[7] Caliskan, G., & Dirim, S.N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder technology., 287: p. 308-314 https://doi.org/10.1016/j.powtec.2015.10.019.
[8] Hosseini, S.K. (2021). Preparation of barberry powder produced by foam mat method and the effect of dryer temperature on its properties. Inno. F. Tech., 8(2): p. 253-272. [In persion]
[9] Wilson, R.A.,  Kadam, DM., Chadha, S.,  Grewal, MK., &  Sharma., M. ( 2014). Evaluation of Physical and Chemical Properties of Foam‐Mat Dried Mango (M angifera indica) Powder during Storage. J. of F. Proces & Preser., 38(4): p. 1866-1874. https://doi.org/10.1111/jfpp.12158.
[10] Malik, M., & Sharma, A. (2019). Optimisation of foam‐mat drying of yoghurt and properties of powdered yoghurt. Inter. J. of Dairy Techno, 72(3): p. 381-387. https://doi.org/10.1111/1471-0307.12594.
[11] Yüksel, A.N. (2021). Development of yoghurt powder using microwave-assisted foam-mat drying. J. of F. Sc.i & Techno., 58(7): p. 2834-2841. https://doi.org/10.1007/s13197-021-05035-2.
[12] GülÅŸah, Ã., & Yüksel, A.N. (2020). THE FAOM-MAT CONVECTIVE AND MICROWAVE DRIED AVOCADO POWDER: PHYSICAL, FUNCTIONAL, AND POWDER PROPERTIES: FOAM-MAT CONVECTIVE AND MICROWAVE DRIED AVOCADO POWDER. Latin American Applied Research-An international journal. 50(4): p. 291-297. https://doi.org/10.52292/j.laar.2020.486.
[13] Çalışkan Koç, G.,Yüksel, AN.,&   Baş, E.,&  Erdoğan, SL. (2020). J of F Pro Eng,. 43(11): p. e13516https://doi.org/10.1111/jfpe.13516.
[14] Shameena Beegum, P., Manikantan, MR ., Anju, KB., Vinija, V., Pandiselvam, R., & Jayashekhar., S. (2022).  Foam mat drying technique in coconut milk: Effect of additives on foaming and powder properties and its economic analysis. J. of F. Proce. & Preser., 46(11): p. e17122. https://doi.org/10.1111/jfpp.17122.
[15] Ali-Haïmoud, Y. & Kamionkowski., M. (2017). Cosmic microwave background limits on accreting primordial black holes. Physical Review D., 95(4): p. 043534. https://doi.org/10.1103/PhysRevD.95.043534.
[16] Gye, M.C. & Park., C.J. (2012). Effect of electromagnetic field exposure on the reproductive system. Clinical and experimental reproductive medicine., 39(1): p. 1. https://doi.org/10.5653%2Fcerm.2012.39.1.1.
[17] Norambuena-Contreras, J. & Gonzalez-Torre., I. (2017). Influence of the microwave heating time on the self-healing properties of asphalt mixtures. Applied Sciences., 7(10): p. 176. https://doi.org/10.3390/app7101076
[18] Yüksel, A.N. (2020). MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. Gıda., 45(6): p. 1134-1142. https://doi.org/10.15237/gida.GD20088.
[19] Sun, Y., Zhang, Y., Xu, W., & Zheng., X. (2020). Analysis of the anthocyanin degradation in blue honeysuckle berry under microwave assisted foam-mat drying. Foods., 9(4): p. 397 https://doi.org/10.3390/foods9040397.
[20] Benković, M., Pižeta, M., Tušek, AJ.,  Jurina, T., &   Kljusurić, JG. (2019). Optimization of the foam mat drying process for production of cocoa powder enriched with peppermint extract. LWT., 115: p. 108440 https://doi.org/10.1016/j.lwt.2019.108440.
[21] Dehghannya, J., Pourahmad, M., & Ghanbarzadeh, B. (2019). Heat and mass transfer enhancement during foam-mat drying process of lime juice: Impact of convective hot air temperature. Inter. J. of Ther. Sci., 135: p. 30-43. https://doi.org/10.1016/j.ijthermalsci.2018.07.023.[In persion]
[22] Franco, T.S., Perussello  CA., &  Ellendersen, LN. (2016). Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT-F. Sci & Techno., 66: p. 503-513. https://doi.org/10.1016/j.lwt.2015.11.009.
[23] Najafian, N., Aarabi, A., & Nezamzadeh-Ejhieh, A. (2022). Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum. Inter. J.l of Bio. Macro.., 223: p. 1257-1267 https://doi.org/10.1016/j.ijbiomac.2022.11.056.[In persion]
[24] Qadri, O.S., & Srivastava, A.K. (2017). Microwave‐assisted foam mat drying of guava pulp: Drying kinetics and effect on quality attributes. J.l of f. pro. engi., 40(1): p. e12295. https://doi.org/10.1111/jfpe.12295.
[25] Sanchez-Gonzalez, N., & Jaime-Fonseca, MR. (2013). Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J. of Agri. & f. Chemi., 61(49): p. 11995-12004. https://doi.org/10.1021/jf401705h.
[26] Darniadi, S., Ifie, I.,  Luna, P.,  Ho, P., &  Murray, BS. (2020). Foam-mat freeze-drying of blueberry juice by using trehalose-β-lactoglobulin and trehalose-bovine serum albumin as matrices. F & Bio Tech., 13: p. 988-997. https://doi.org/10.1007/s11947-020-02445-6.
[27] Ifie, I., Marshall, LJ., &  Ho, P (2016). Hibiscus sabdariffa (Roselle) extracts and wine: Phytochemical profile, physicochemical properties, and carbohydrase inhibition. J.l of agri & f. chemi., 64(24): p. 4921-4931. https://doi.org/10.1021/acs.jafc.6b01246.
[28] Haji Ali Asghari, M. & Sharifi, A. (2022). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried Echium amoenum powder. Inno F Tech., 9(2): p. 149-165 https://doi.org/10.22104/jift.2021.5253.2073.[In persion]
[29] Seerangurayar, T., &  Manickavasagan, A.  (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Drying Technology., 36(11): p. 1292-1303. https://doi.org/10.1080/07373937.2017.1400557.
[30] Abd El-Salam, E.A. & Morsy, N.F. (2019). Optimization of the extraction of polyphenols and antioxidant activity from Malva parviflora L. leaves using Box–Behnken design. Pre. Bioch. & Biotech., 49(9): p. 876-883. https://doi.org/10.1080/10826068.2019.1633667.
[31] Caparino, O., Tang, J.,  Nindo, CI., & Sablani, SS. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. J & f Eng., 111(1): p. 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010.
[32] Chaux-Gutiérrez, A.M., Santos, AB.,  Granda-Restrepo, DM., &  Mauro, MA. (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality. Drying Technology., 35(5): p. 631-641. https://doi.org/10.1080/07373937.2016.1201486.
[33] Hamzeh, S., Motamedzadegan, A.,  Shahidi, SA.,  Ahmadi, M., &  Regenstein, JM. (2019). Effects of drying condition on physico-chemical properties of foam-mat dried shrimp powder. J.l of Aquatic F. Pro. Techno., 28(7): p. 794-805. https://doi.org/10.1080/10498850.2019.1640817. [In persion]
[34] Khashayary, S. & Aarabi, A. (2021). Evaluation of physico-mechanical and antifungal properties of gluten-based film incorporated with vanillin, salicylic acid, and montmorillonite (Cloisite 15A). F.& Bio Techno., 14(4): p. 665-678. https://doi.org/10.1007/s11947-021-02598-y. [In pertion]
[35] Franco, T. S., Ellendersen, L. N., Fattori, D., Granato, D., & Masson, M. L. (2015). Influence of the addition of ovalbumin and emulsifier on the physical properties and stability of yacon (Smallanthus sonchifolius) juice foams prepared for foam mat drying process. F. & bio. techno8, 2012-2026.‏
[36] Abbasi, E. & Azizpour, M. (2016). Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT-F. Sci. & Techno., 68: p. 105-110 https://doi.org/10.1016/j.lwt.2015.12.004. [In persion]
[37] Azizpour, M., Mohebbi, M. & Khodaparast M.H.H. (2016). Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder. Inno. f. sci. & emer. tech., 34: p. 122-126. https://doi.org/10.1016/j.ifset.2016.01.002. [In persion]
[38] Sharada, S. (2013). Studies on effect of various operating parameters & foaming agents-Drying of fruits and vegetables. Inter.l J. of Modern En. Research3(3), 1512-1519.‏
[39] Schaczenski, J., & Michels, H. (2010). National Sustainable Agriculture Information Service.‏
[40] Xiong, X., Ho, MT.,  Bhandari, B., &  Bansal, N. (2020). Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios. Inter. Dairy J., 109: p. 104758 https://doi.org/10.1016/j.idairyj.2020.104758.
[41] Marinova, K. G., Basheva, E. S., Nenova, B., Temelska, M., Mirarefi, A. Y., Campbell, B., & Ivanov, I. B. (2009). Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids23(7), 1864-1876.‏
[42] Shaari, N.A., Sulaiman, R., Rahman, RA., & Bakar, J. (2018). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. J. of F. pro& Pres., 42(2): p. e13467. https://doi.org/10.1111/jfpp.13467.
[43] Gengatharan, A., Dykes, G.A. & Choo, W.S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-F. Sci & Techno., (2)64: p. 645-649. https://doi.org/10.1016/j.lwt.2015.06.052.
[44] Slavov, A., Karagyozov, V., Denev, P., Kratchanova, M., & Kratchanov, C. (2013). Antioxidant activity of red beet juices obtained after microwave and thermal pretreatments. Czech J. of F. Sci., 31(2): p. 139-147. https://doi.org/10.17221/61/2012-CJFS.
[45] Ravichandran, K., Saw, NMMT.,  Mohdaly, AAA. (2013). Impact of processing of red beet on betalain content and antioxidant activity. F. res. inter.,50(2): p. 670-675. https://doi.org/10.1016/j.foodres.2011.07.002.
[46] Shofinita, D., Fawwaz, M., & Achmadi, A.B. (2023). Betalain extracts: Drying techniques, encapsulation, and application in food industry. Food Frontiers., https://doi.org/10.1002/fft2.227.
[47] Dehghannya, J., Pourahmad, M., &  Ghanbarzadeh, B. (2018). Heat and mass transfer modeling during foam-mat drying of lime juice as affected by different ovalbumin concentrations. J. of. F. Eng., 238: p. 164-177 https://doi.org/10.1016/j.jfoodeng.2018.06.014. [In persion].
[48] Alami, M., Shirmohammadi, M., Maqsoodlou, Y., & Khameri, M. (2022). The effect of spray drying conditions on the physical, functional and production efficiency of our water powder. In. in f. sci & techno., 14(2): p. 93-108. https://doi.org/10.30495/jfst.2020.1867058.1509[In Persian].
[49] Anandharamakrishnan, C., Rielly, C., & Stapley, A. (2007). Effects of process variables on the denaturation of whey proteins during spray drying. Drying technology., 25(5): p. 799-807. https://doi.org/10.1080/07373930701370175.
[50] Anandharamakrishnan, C., Rielly, C.D., & Stapley, A.G. (2008). Loss of solubility of α-lactalbumin and β-lactoglobulin during the spray drying of whey proteins. LWT-F. Sci & Tech., 41(2): p. 270-277. https://doi.org/10.1016/j.lwt.2007.03.004.
[51] Pieganbar Doost, S.H., & Sarabandi, KH. (2017). Effect of spray drying conditions on physicochemical, functional and production efficiency of malt extract powder. F. Ind. Res., 27(2): p. 75-90.[In Persian].
[52] Elshiemy, S., Soliman, IA., Abdelaleem,  MA., &   Elbassiony, KRA. (2019). Antioxidant and Antibacterial Activity of Gamma Irradiated Red Beet (Beta Vulgaris L.) Leaves and Roots. J. of Nuclear Tech. in appl. sci., 7: p. 33-50. https://www.researchgate.net/publication/330181081.
[53] Dias, R., Oliveira, H., Fernandes, I., Simal-Gandara, J., & Perez-Gregorio, R. (2021). Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Revi. in f. sci. and nutr., 61(7): p. 1130-1151. https://doi.org/10.1080/10408398.2020.1754162.
[54] Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. J. F. Bio., 44(9): p. e13394 .https://doi.org/10.1111/jfbc.13394.
[55] Ghanem, N.,Mihoubi, D., & Kechaou, N. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Indu. Cro. & Pro., 40: p. 167-177. https://doi.org/10.1016/j.indcrop.2012.03.009. [In persion]
[56] Behgar, M., Ghasemi, S., Naserian, A., & Borzoie, A. (2011). Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio (Pistachia vera) hull. Radi. Physics& Chem., 80(9): p. 963-967. https://doi.org/10.1016/j.radphyschem.2011.04.016. [In persion]
[57] Kumari, N.,Kumar, P., Mitra, D.,  Prasad, B., Tiwary, BN.,& Varshney, L. (2009). Effects of ionizing radiation on microbial decontamination, phenolic contents, and antioxidant properties of triphala. J. of f. sci., 74(3): p. M109-M113. https://doi.org/10.1111/j.1750-3841.2009.01079.x.
[58] Brar, A.S.,Kaur, P.,  Kaur, G., & Subramanian, J. (2020). Optimization of process parameters for foam-mat drying of peaches. Inter. j. of fruit sci., 20(sup3): p. S1495-S1518 https://doi.org/10.1080/15538362.2020.1812017.
[59] Garau, M.C.,Simal, S.,  Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food chemistry., 104(3): p. 1014-1024. https://doi.org/10.1016/j.foodchem.2009.04.066.
[60] Özcan, M.M., Al Juhaimi, F.,  Ahmed, IAM.,  Uslu, N.,  Babiker, EE., & Ghafoor, K. (2020). Effect of microwave and oven drying processes on antioxidant activity, total phenol and phenolic compounds of kiwi and pepino fruits. J. f. of sci & techno., 57: p. 233-242 https://doi.org/10.1007/s13197-019-04052-6.
[61] Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, CE., & Copur, OU. (2018) The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). F. Sci. & Techno., 39: p. 475-484. https://doi.org/10.1590/fst.34417.
[62] Azizpour, M., Mohebbi, M., Hossein Haddad Khodaparast, M., & Varidi, M. (2014). Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus). Drying Technology., 32(4): p. 374-384 https://doi.org/10.1080/07373937.2013.794829. [In  persion].
 [63] Franco, T.S., Ellendersen, LN., Fattori, D., Granato, D,. & Masson, ML. (2015). Influence of the addition of ovalbumin and emulsifier on the physical properties and stability of yacon (Smallanthus sonchifolius) juice foams prepared for foam mat drying process. F & bio techno., 8: p. 2012-2026. DOI 10.1007/s11947-015-1553-5.
[64] Kanha, N., Regenstein, J.M. & Laokuldilok, T. (2022). Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray-and freeze-dried powders. Drying Technology., 40(3): p. 581-594. https://doi.org/10.1080/07373937.2020.1819824.
[65] Tomczyńska-Mleko, M,. Kamysz, E., Sikorska, E., Puchalski, C., Mleko, S., Ozimek, L,. & Kowaluk, G. (2014). Changes of secondary structure and surface tension of whey protein isolate dispersions upon pH and temperature .Czech J. of F. Sci., 32(1): p. 82-89 https://doi.org/10.17221/326/2012-CJFS.