Impact of Ultrasound Intensity and Duration on the Rheological Behaviour of Sodium Alginate Solution

Document Type : Research Article

Authors

1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran

2 MSc Student, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran

Abstract

One of the recent uses of sonication is to change the composition and structural properties of hydrocolloids. This study aimed to examine the impacts of sonication at different intensities (0, 75, and 150 W) and time (0, 5, 10, 15, and 20 min) on the viscosity and rheological properties of sodium alginate solution. The results showed that the apparent viscosity of sodium alginate solution (control sample) decreased from 0.075 to 0.032 Pa.s with increasing shear rate from 12.2 to 134.5 s-1. Also, the apparent viscosity of sodium alginate solution decreased from 0.044 to 0.019 Pa.s with enhancing the sonication time from 0 to 20 min (shear rate=61 s-1, 150 W). Various rheological equations (Power law, Bingham, Herschel-Bulkley, Casson, and Vocadlo) were employed to fit the empirical values, and the results confirmed that the Power law model was the best fit to describe the flow behaviour of sodium alginate solution. The consistency coefficient of sodium alginate solution significantly decreased from 0.216 Pa.sn to 0.151 Pa.sn (p<0.05) with enhancing sonication time from 0 to 20 min. Furthermore, the consistency coefficient of sodium alginate solution decreased significantly (p<0.05) while the ultrasonic power enhanced. Flow behaviour index of sodium alginate solution enhanced significantly (p<0.05) while the intensity and duration of ultrasound treatment enhanced.

Graphical Abstract

Impact of Ultrasound Intensity and Duration on the Rheological Behaviour of Sodium Alginate Solution

Highlights

  • Apparent viscosity of sodium alginate solution decreased with increasing ultrasonic power.
  • Power law equation was the best model to describe flow behaviour of gum solution.
  • Consistency coefficient of solutions significantly decreased with increasing sonication time.
  • Flow behaviour index of solutions significantly increased with increasing sonication time.

Keywords

Main Subjects


[1] Salehi, F. (2020). Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. J. Texture Stud., 51, 361-370. doi: 10.1111/jtxs.12482
[2] Won, K., Kim, S., Kim, K.-J., Park, H.W., & Moon, S.-J. (2005). Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem., 40, 2149-2154. doi: 10.1016/j.procbio.2004.08.014
[3] Jansrimanee, S., & Lertworasirikul, S. (2020). Synergetic effects of ultrasound and sodium alginate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrason. Sonochem., 69, 105256. doi: 10.1016/j.ultsonch.2020.105256
[4] Chen, K., Li, J., Li, L., Wang, Y., Qin, Y., & Chen, H. (2023). A pH indicator film based on sodium alginate/gelatin and plum peel extract for monitoring the freshness of chicken. Food Biosci., 53, 102584. doi: 10.1016/j.fbio.2023.102584
[5] Wen, Q., Wang, X., Liu, B., Lu, L., Zhang, X., Swing, C.J., & Xia, S. (2022). Effect of synergism between sodium alginate and xanthan gum on characteristics of composite film and gloss of areca nut coating. Food Biosci., 50, 102113. doi: 10.1016/j.fbio.2022.102113
[6] Matuska, M., Lenart, A., & Lazarides, H.N. (2006). On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. J. Food Eng., 72, 85-91. doi: 10.1016/j.jfoodeng.2004.11.023
[7] Mohod, A.V., & Gogate, P.R. (2011). Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrason. Sonochem., 18, 727-734. doi: 10.1016/j.ultsonch.2010.11.002
[8] Salehi, F. (2023). Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review. Food Biosci., 51, 102307. doi: 10.1016/j.fbio.2022.102307
[9] Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: A review. Int. J. Food Prop., 23, 1748-1765. doi: 10.1080/10942912.2020.1825486
[10] Li, J., Li, B., Geng, P., Song, A.-X., & Wu, J.-Y. (2017). Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocolloid, 70, 14-19. doi: 10.1016/j.foodhyd.2017.03.022
[11] Muñoz-Almagro, N., Montilla, A., Moreno, F.J., & Villamiel, M. (2017). Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment. Ultrason. Sonochem., 38, 807-819. doi: 10.1016/j.ultsonch.2016.11.039
[12] Du, B., Jeepipalli, S.P.K., & Xu, B. (2022). Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication. Ultrason. Sonochem., 90, 106170. doi: 10.1016/j.ultsonch.2022.106170
[13] Wei, Y., Li, G., & Zhu, F. (2023). Impact of long-term ultrasound treatment on structural and physicochemical properties of starches differing in granule size. Carbohydr. Polym., 320, 121195. doi: 10.1016/j.carbpol.2023.121195
[14] Li, R., & Feke, D.L. (2015). Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: Effects of pyruvate group. Carbohydr. Polym., 124, 216-221. doi: 10.1016/j.carbpol.2015.02.018
[15] Salehi, F., Inanloodoghouz, M., & Karami, M. (2023). Rheological properties of carboxymethyl cellulose (CMC) solution: Impact of high intensity ultrasound. Ultrason. Sonochem., 101, 106655. doi: 10.1016/j.ultsonch.2023.106655
[16] Feng, L., Cao, Y., Xu, D., Wang, S., & Zhang, J. (2017). Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrason. Sonochem., 34, 609-615. doi: 10.1016/j.ultsonch.2016.06.038
[17] Grönroos, A., Pirkonen, P., & Ruppert, O. (2004). Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrason. Sonochem., 11, 9-12. doi: 10.1016/S1350-4177(03)00129-9
[18] Oloruntoba, D., Ampofo, J., & Ngadi, M. (2022). Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding. Ultrason. Sonochem., 91, 106237. doi: 10.1016/j.ultsonch.2022.106237
[19] Cui, S.W. (2005) Structural analysis of polysaccharides, CRC press, United States.
[20] Sarraf, M., Naji-Tabasi, S., & Beig-babaei, A. (2021). Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum. Food Sci. Nutr., 9, 6728-6736. doi: 10.1002/fsn3.2624
[21] Farizadeh, S., & Abbasi, H. (2023). Effect of ultrasonic waves on structural, functional and rheological properties of locust bean gum. Iranian Food Science and Technology Research Journal, 19, 365-381. doi: 10.22067/ifstrj.2022.74595.1133
[22] Gómez-Díaz, D., Navaza, J.M., & Quintáns-Riveiro, L.C. (2008). Intrinsic Viscosity and Flow Behaviour of Arabic Gum Aqueous Solutions. Int. J. Food Prop., 11, 773-780. doi: 10.1080/10942910701596918
[23] Yang, Y., Chen, D., Yu, Y., & Huang, X. (2020). Effect of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin. Food Sci. Nutr., 8, 4266-4275. doi: 10.1002/fsn3.1722
[24] Kumar, Y., Roy, S., Devra, A., Dhiman, A., & Prabhakar, P.K. (2021). Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT, 149, 111632. doi: 10.1016/j.lwt.2021.111632
[25] Xu, D., Feng, L., Cao, Y., & Xiao, J. (2016). Impact of ultrasound on the physical properties and interaction of chitosan–sodium alginate. J. Dispersion Sci. Technol., 37, 423-430. doi: 10.1080/01932691.2015.1038830