[1] Umaraw, P., & Verma, A. K. (2017). Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach.
Critical Reviews in Food Science and Nutrition, 57(6), 1270-1279.
https://doi.org/10.1080/10408398.2014.986563
[3] Erkan, N., Doğruyol, H., Günlü, A., & Genç, İ. Y. (2015). Use of natural preservatives in seafood: Plant extracts, edible film and coating.
Food and Health, 1(1), 33-49.
https://doi.org/10.3153/JFHS15004
[4] Singh, R. S., & Kaur, N. (2015). Microbial biopolymers for edible film and coating applications. Advances in Biotechnology, 12, 187-216.
[5] Kumari, N., Bangar, S. P., Petrů, M., Ilyas, R. A., Singh, A., & Kumar, P. (2021). Development and characterization of fenugreek protein-based edible film.
Foods, 10(9), 1976.
https://doi.org/10.3390/foods10091976
[6] Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration.
Carbohydrate Polymers, 153, 345-355.
https://doi.org/10.1016/j.carbpol.2016.07.082
[7] Zare, E. N., Jamaledin, R., Naserzadeh, P., Afjeh-Dana, E., Ashtari, B., Hosseinzadeh, M., ... & Makvandi, P. (2019). Metal-based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications.
ACS Applied Materials & Interfaces, 12(3), 3279-3300.
https://doi.org/10.1021/acsami.9b19435
[8] Makvandi, P., Wang, C. Y., Zare, E. N., Borzacchiello, A., Niu, L. N., & Tay, F. R. (2020). Metal‐based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects.
Advanced Functional Materials, 30(22), 1910021.
https://doi.org/10.1002/adfm.201910021
[10] Wang, N., Liu, W., Zhang, T., Jiang, S., Xu, H., Wang, Y., ... & Chen, X. (2018). Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis.
Journal of Agricultural and Food Chemistry, 66(27), 7076-7086.
https://doi.org/10.1021/acs.jafc.8b01273
[11] Díaz‐García, M. C., Castellar, M. R., Obón, J. M., Obón, C., Alcaraz, F., & Rivera, D. (2015). Production of an anthocyanin‐rich food colourant from Thymus moroderi and its application in foods.
Journal of the Science of Food and Agriculture,
95(6), 1283-1293.
https://doi.org/10.1002/jsfa.6821
[12] Schmidt, V. C. R., Berti, F., Porto, L. M., & Laurindo, J. B. (2013). Production of starch acetate films with addition of bacterial cellulose nanofibers.
Chemical Engineering Transactions, 32, 2251-2256.
https://doi.org/10.3303/CET1332376
[13] Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness.
Food Hydrocolloids, 100, 105438.
https://doi.org/10.1016/j.foodhyd.2019.105438
[14] Casariego, A. B. W. S., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations.
Food Hydrocolloids, 23(7), 1895-1902.
https://doi.org/10.1016/j.foodhyd.2009.02.007
[15] Ekrami, M., Emam-Djomeh, Z., Ghoreishy, S. A., Najari, Z., & Shakoury, N. (2019). Characterization of a high-performance edible film based on Salep mucilage functionalized with pennyroyal (Mentha pulegium).
International Journal of Biological Macromolecules, 133, 529-537.
https://doi.org/10.1016/j.ijbiomac.2019.04.136
[16] Ramesh, S., & Radhakrishnan, P. (2019). Cellulose nanoparticles from agro-industrial waste for the development of active packaging.
Applied Surface Science, 484, 1274-1281.
https://doi.org/10.1016/j.apsusc.2019.04.003
[17] Kan, J., Liu, J., Yong, H., Liu, Y., Qin, Y., & Liu, J. (2019). Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract.
International Journal of Biological Macromolecules, 140, 384-392.
https://doi.org/10.1016/j.ijbiomac.2019.08.155
[18] Rambabu, K., Bharath, G., Banat, F., Show, P. L., & Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging.
International Journal of Biological Macromolecules, 126, 1234-1243.
https://doi.org/10.1016/j.ijbiomac.2018.12.196
[19] Bar-Ya'akov, I., Tian, L., Amir, R., & Holland, D. (2019). Primary metabolites, anthocyanins, and hydrolyzable tannins in the pomegranate fruit.
Frontiers in Plant Science, 10, 620.
https://doi.org/10.3389/fpls.2019.00620
[21] Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent.
Food Hydrocolloids, 89, 674-681.
https://doi.org/10.1016/j.foodhyd.2018.11.036
[22] Zheng, K., Zhang, J., Yang, F., Wang, W., Li, W., & Qin, C. (2022). Properties and biological activity of chitosan-coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preservation.
LWT, 164, 113665.
https://doi.org/10.1016/j.lwt.2022.113665
[23] Roy, S., Kim, H. C., Panicker, P. S., Rhim, J. W., & Kim, J. (2021). Cellulose nanofiber-based nanocomposite films reinforced with zinc oxide nanorods and grapefruit seed extract.
Nanomaterials, 11(4), 877.
https://doi.org/10.3390/nano11040877
[24] Roy, S., & Rhim, J. W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide.
International Journal of Biological Macromolecules, 148, 666-676.
https://doi.org/10.1016/j.ijbiomac.2020.01.204
[25] Jancikova, S., Jamróz, E., Kulawik, P., Tkaczewska, J., & Dordevic, D. (2019). Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials.
International Journal of Biological Macromolecules, 131, 19-28.
https://doi.org/10.1016/j.ijbiomac.2019.03.050
[26] Wang, N., Liu, W., Zhang, T., Jiang, S., Xu, H., Wang, Y., ... & Chen, X. (2018). Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis.
Journal of Agricultural and Food Chemistry, 66(27), 7076-7086.
https://doi.org/10.1021/acs.jafc.8b01273
[27] Bravin, B., Peressini, D., & Sensidoni, A. (2006). Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products.
Journal of Food Engineering, 76(3), 280-290.
https://doi.org/10.1016/j.jfoodeng.2005.05.021
[28] Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., ... & He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH.
Food Chemistry, 274, 460-470.
https://doi.org/10.1016/j.foodchem.2018.07.141
[29] Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract.
Food Hydrocolloids, 94, 80-92.
https://doi.org/10.1016/j.foodhyd.2019.03.009
[30] Jin, M. (2012). Plant protein-based nanocomposite materials: modification of layered nanoclay by surface coating and enhanced interactions by enzymatic and chemical cross-linking.
[31] Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film.
Food Hydrocolloids, 25(5), 1098-1104.
https://doi.org/10.1016/j.foodhyd.2010.10.006
[32] De Moura, M. R., Mattoso, L. H., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging.
Journal of Food Engineering, 109(3), 520-524.
https://doi.org/10.1016/j.jfoodeng.2011.10.030
[33] Zheng, J. P., Li, P., Ma, Y. L., & Yao, K. D. (2002). Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties.
Journal of Applied Polymer Science, 86(5), 1189-1194.
https://doi.org/10.1002/app.11062
[34] Moghadam, M., Salami, M., Mohammadian, M., & Emam-Djomeh, Z. (2021). Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins.
Journal of Food Measurement and Characterization, 15, 2984-2994.
https://doi.org/10.1007/s11694-021-00872-3
[35] Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. (2013). PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics.
European Polymer Journal, 49(11), 3471-3482.
https://doi.org/10.1016/j.eurpolymj.2013.08.005
[37] Tayel, A. A., EL‐TRAS, W. F., Moussa, S., EL‐BAZ, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens.
Journal of Food Safety, 31(2), 211-218.
https://doi.org/10.1111/j.1745-4565.2010.00287.x
[38] Pirsa, S., Karimi Sani, I., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage.
Food Additives & Contaminants: Part A, 37(4), 634-648.
https://doi.org/10.1080/19440049.2020.1716079
[39] Shabahang, Z., Nouri, L., & Nafchi, A. M. (2022). Composite film based on whey protein isolate/pectin/CuO nanoparticles/betanin pigments; investigation of physicochemical properties
. Journal of Polymers and the Environment, 30(9), 3985-3998.
https://doi.org/10.1007/s10924-022-02481-7