[1] Chang, A., Zheng, X., Xiao, H., Yao, X., Liu, D., Li, X., & Li, Y. (2022). Short- and medium-wave infrared drying of cantaloupe (cucumis melon l.) slices: drying kinetics and process parameter optimization. Processes, 10, 114.
[2] Zadhossein, S., Abbaspour-Gilandeh, Y., Kaveh M., Kalantari, D., & Khalife, E. (2022) Comparison of two artificial intelligence methods (ANNs and ANFIS) for estimating the energy and exergy of drying cantaloupe in a hybrid infrared-convective dryer. J Food Process Preserv. 2022;00:e16836
[3] Mirzaei, S., Ameri, M., & Ziaforoughi, A. (2021). Energy-exergy analysis of an infrared dryer equipped with a photovoltaicthermal collector in glazed and unglazed modes. Renew Energy. 169, 541-556
[4] Cunha, R. M. C. D., Brandão, S. C. R., da Medeiros, R. A. B., da Silva Júnior, E. V., da Silva, J. H. F, & Azoubel, P.M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chem, 333, 127502
[5] Abdullah, R. S. S., Khatri, P., Kumar, L., Kumar, A. & Mujumdar, A. S. (2022). Role of drying technology in probiotic encapsulation and impact on food safety. Drying Technol, DOI: 10.1080/07373937.2022.2044844 (In Press).
[6] Reis, F.R., Marques, C., de Moraes, A. C. S., & Masson M. L. (2022). Trends in quality assessment and drying methods used for fruits and vegetables. Food Control, 142, 109254
[7] Savas, E. (2022).The modelling of convective drying variables’ effects on the functional properties of sliced sweet potatoes. Foods., 11, 741.
[8] Kıan-pour, N. Fundamental drying techniques applied in food science and technology. IJFER 2020, 6, 35–63
[9] Miranda, M., Vega-Galvez, A., Lopez, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scala, K. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Wild). Ind. Crop. Prod., 32, 258–263
[10] Aghilinategh, N., Rafiee, S., Hosseinpur, S., Omid, M., & Mohtasebi, S. S. (2015). Optimization of intermittent microwave–convective drying using response surface methodology. Food Sci Nutri. 3(4), 331–341.
[11] Karaman, S., Toker, O. S., Çam, M., Hayta, M., Dogan, M., & Kayacier, A. (2014). Bioactive and physicochemical properties of persimmon as affected by drying methods. Dry. Technol. 32, 258–267.
[12] Senadeera, W., Adiletta, G., Önal, B., Matteo M. D., & Russo, P. (2020). Influence of Different Hot Air Drying Temperatures on Drying Kinetics, Shrinkage, and Colour of Persimmon Slices. Foods, 9, 101.
[13] Hassan, A. M. A., Zannou, O., Pashazadeh H., Redha, A. A., & Koca, I. (2022). Drying date plum (Diospyros lotus L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. J. Food Sci., 1–22
[14] Chikpah, S. K., Korese, J. K., Sturm, B., & Hensel, O. (2022). Colour change kinetics of pumpkin (Cucurbita moschata) slices during convective air drying and bioactive compounds of the dried products. J Agri Food Res. 10, 100409
[15] Monteiro, S. S., da Silva, W. P., Monteiro, S. S., Gomes, J. P., Pereira E. M., & de Lima Ferreir, J. P., (2022). Probiotic coating applied to papaya slices for high quality snack production by convective drying. J Food Process Preserv. 46(1), e16183
[16] Zannou, O., Pashazadeh, H., Ghellam, M., Hassan, A. M. A., & Koca, I. (2021). Optimization of drying temperature for the assessment of functional and physical characteristics of autumn olive berries. J Food Process Preserv. 45(9), e15658
[17] Zzaman, W., Biswas, R., & Hossain, M.A., (2020). Application of immersion pre-treatments and drying temperatures to improve the comprehensive quality of pineapple (Ananas comosus) slices. Heliyon, 6, e05882
[18] Roman, M. C., Fabani, M. P., Luna, L. C., Feresin, G. E., Mazza, G., & Rodriguez, R. (2020). Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds.
Inform Process Agr. 7(2), 333-341
[19] Zahoor, I., & Khan M. A., (2019). Microwave assisted convective drying of bitter gourd: drying kinetics and effect on ascorbic acid, total phenolics and antioxidant activity. Food Measure. 13, 2481–2490.
[20] Nakilcioğlu‑Taş, E., Coşan, G., & Ötleş, S. (2021). Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot‑air drying. Food Measure. 15, 2146–2160.
[22] Rashidi, M., Amiri Chayjan, R., Ghasemi, A., & Ershadi, A. (2021). Tomato tablet drying enhancement by intervention of infrared - A response surface strategy for experimental design and optimization. Biosystems Eng, 208, 199- 212
[23] Li, X., Liu, J, Cai, J., Xue, L., Wei, H., Zhao, M., & Yang, Y. (2021). Drying characteristics and processing optimization of combined microwave drying and hot air drying of Termitomyces albuminosus mushroom. J Food Process Preserv, 45(12), e16022.
[24] Nurkhoeriyati, T., Kulig , B., Sturm, B., & Hensel, O. (2021). The effect of pre-drying treatment and drying conditions on quality and energy consumption of hot air-dried celeriac slices: Optimisation. Foods, 10, 1758.
[25] Chayjan, R. A., Agha-Alizade, H. H., Barikloo, H., & Soleymani, B. (2012). Modeling some drying characteristics of cantaloupe slices. Cercetări agronomice în Moldova, 2, 5–14.
[26] Kaveh, M. & Abbaspour‐Gilandeh, Y. (2022). Drying characteristics, specific energy consumption, qualitative properties, total phenol compounds, and antioxidant activity during hybrid hot air‐microwave‐ rotary drum drying of green pea. Iran. J. Chem. Chem. Eng. 40, 655–672
[27] Lemus-Mondaca R., Zura-Bravo, L., Ah-Hen, K., & Di Scala, K. (2021). Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves. J Sci Food Agr. 101 (15), 6484-6495
[28] Kumar, R., Pandey, O.P., Dhiman, S. K., & Kumar, P. (2021). Influence of blanching and drying air temperature on drying kinetics of banana slices. J Biosystems Eng. 45, 375–385
[29] Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., & Khoshtaghaza, M. H. (2014). Comparison of energy parameters in various dryers. Energy ConverManag., 87, 711–725.
[30] Kaveh, M., Abbaspour-Gilandeh, Y., Nowacka, M. (2021). Comparison of different drying techniques and their carbon emissions in green peas. Chem Eng Process: Process Int, 160, 108274
[31] El-Mesery, H. S., Kamel, R. M., & Alshaer W. G. (2022). Thin-layer drying characteristics, modeling and quality attributes of tomato slices dried with infrared radiation heating. Biosci J, 38, e38049
[32] Zhang, Y., Zielinska, M., Vidyarthi, S.K., Zhao J-H, Peia Y-P, Lib, G., Zheng Z-A, Wu, M., Gao, Z.J., & Xia H-W. (2020). Pulsed pressure pickling enhances acetic acid transfer, thiosulfinates degradation, color and ultrastructure changes of “Laba” garlic. Innov Food Sci Emerg Technol. 65, 102438.
[33] Dehghannya J., Kadkhodaei, S., Heshmati, MK., & Ghanbarzadeh B (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave – hot air drying process of potato: Quality aspects and energy consumption. Ultrason, 96, 104–122
[34] Liu, J., Liu, Y., Li, X., Zhu, J., Wang, X., & Ma, L. (2023). Drying characteristics, quality changes, parameters optimization and flavor analysis for microwave vacuum drying of garlic (Allium sativum L.) slices. LWT, 173. 114372.
[35] Bao, X., Min, R., Zhou, K., Traffano-Schiffo, M.V., Dong, Q., & Luo W (2023). Effects of vacuum drying assisted with condensation on drying characteristics and quality of apple slices. J Food Eng. 340, 111286.
[36] Rybak, K., Wiktor, A., Witrowa‐Rajchert, D., Parniakov O., & Nowacka M (2021). The Quality of Red Bell Pepper Subjected to Freeze‐DryingPreceded by Traditional and Novel Pretreatment. Foods, 10, 1943.
[37] Chasiotis V., Nikas, K-S., & Filios, A. (2022). Modeling and optimization of non-isothermal convective drying process of Lavandula allardii.
Information Process Agr.
https://doi.org/10.1016/j.inpa.2022.06.001 (In Press).
[38] Yuan, L., Zheng, X., & Shen, L. (2022). Continuous microwave drying of germinated red adzuki bean: Effect of various drying conditions on drying behavior and quality attributes.
J Food Process Preserv.
https://doi.org/10.1111/jfpp.17090 (In Press)
[39] EL-Mesery, H. S., Tolba, N. M., & Kamel, R. M. (2023). Mathematical modelling and performance analysis of airflow distribution systems inside convection hot-air dryers. Alexandria Eng J. 62, 237-256.
[40] Ghavidelan M. A., & Chayjan R. A. (2017). Application of response surface methodology for optimization of hazelnut drying under infrared fluidized bed. J Food Res. 26(4), 639-65
[41] Xu, Y., Liu, W., Li, L., Cao, W., Zhao, M., Dong, J., Ren, G., Bhandari, B., & Duan, X (2022). Dynamic changes of non-volatile compounds and evaluation on umami during infrared assisted spouted bed drying of shiitake mushrooms. Food Control, 142, 109245.
[42] Xu, Y., Xiao, Y., Lagnika, C., Li, D., Liu, C., Jiang, N., Song, J., & Zhang, M. (2020). A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. capitate Var L.) subjected to different drying methods. Food Chem. 30, 124935
[43] Zahoor, I., & Khan, M. A. (2021). Microwave assisted fluidized bed drying of red bell pepper: Drying kinetics and optimization of process conditions using statistical models and response surface methodology. Sci Horticulturae 286, 110209