[1] Das, S., & Sharangi, A. (2017). Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. J. pharmacogn. phytochem., 6(5), 1695-1701.
[2] Shoba, V. & Pugazhendy, K. (2017). Ethnobotanical and phyto pharmacological activities of madagascar periwinkle (Catharanthus Roseus)-A detailed review. Indo Am. J. pharm., 4(12), 4979-4986.
[3] Mir, M.A., Kumar, A., & Goel, A. (2018). Phytochemical analysis and antioxidant properties of the various extracts of Catharanthus roseus. J. Chem. Pharm., 10(10), 22-31.
[4] Mishra, J.N. & Verma, N.K. (2017). A brief study on Catharanthus Roseus: A review. Int. J. Res. Pharm. Sci., 2, 20-23.
[5] Wilson, D.W., Nash, P., Buttar, H.S., Griffiths, K., Singh, R., Meester, F.D., Horiuchi, R., & Takahashi, T. (2017). The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants. 6, 81-101.
[6] Jahanbakhsh, Z., Mohammadi, M. T., Jafari, M., Khoshbaten, A., & Salehi, M. (2012). Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat. J. Physiol. Pharmacol., 16, 146-155.
[7] Samavati, V., & Manoochehrizade, A. (2013). Dodonaea viscosa var. angustifolia leaf: New source of polysaccharide and its antioxidant activity. Carbohydr. Polym., 98, 199-207.
[8] Alvi, T., Asif, Z., & Iqbal Khan, M.K. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Biosci., 46, 101580.
[9] Araujo, R.G., Rodríguez-Jasso, R. M., Ruíz, H. A., Govea-Salas, M., Pintado, M., & Aguilar, C. N. (2021). Recovery of bioactive components from avocado peels using microwave-assisted extraction. Food Bioprod. Process., 127, 152-161.
[10] Sarfarazi, M., Jafari, S. M., Rajabzadeh, G., & Galanakis, C. M. (2020). Evaluation of microwave-assisted extraction technology for separation of bioactive components of saffron (Crocus sativus L.). Ind. Crops Prod., 145, 111978.
[11] Vieira, V., Prieto, M. A., Barros, L., Coutinho, J. A. P., Ferreira, O., & Ferreira, I. C. F. R. (2017). Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind. Crops Prod., 107, 341-352.
[12] Camel, V., (2000). Microwave-assisted solvent extraction of environmental samples. TrAC - Trends Anal. Chem., 19(4), 229-248.
[13] Gallo, M., Ferracane, R., Graziani, G., Ritieni, A., & Fogliano, V. (2010). Microwave-assisted extraction of phenolic compounds from four different spices. Molecules, 15, 6365-6374.
[14] Lucchesi, M.E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J. Chromatogr. A., 1043, 323–327.
[15] Akhtar, I., Javad, S., Yousaf, Z., Iqbal, S., & Jabeen, K. (2019). Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pak. J. Pharm. Sci., 32, 223-230.
[16] Nour, A., Alara, O.R., Nour, A.H., Omer, M.S., & Ahmad, N.B. (2021). Microwave-assisted extraction of bioactive compounds (Review). In book: Microwave Heating Publisher: Intech Open.
[17] Bas, D., & Boyac, I. (2007). Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng., 78, 846-854.
[18] Singleton, V.L., Orthofer, R., & Lamuela-Raventos, R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299, 152-178.
[19] Zengin, G., Cakmak, Y.S., Guler, G.O., & Aktumsek, A. (2010). In vitro antioxidant capacities and fatty acid compositions of three Centaurea species collected from Central Anatolia region of Turkey. Food Chem. Toxicol. 48, 2638-2641.
[20] Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crops Prod., 49, 668-674.
[21] Quiles-Carrillo, L., Mellinas, C., Garrigós, M. D. C., Balart, R., & Torres-Giner, S. (2019). Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Anal. Methods, 12, 2480-2490.
[22] Weremfo, A., Adulley, F., & Adarkwah-Yiadom, M. (2020). Simultaneous optimization of microwave-assisted extraction of phenolic compounds and antioxidant activity of avocado (Persea americana Mill.) seeds using response surface methodology. J. Anal Methods Chem., 2020, 1-11.
[23] Maran, J.P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym., 97, 703-709.
[24] Li, Y., Li, S., Lin, S.-J., Zhang, J. J., Zhao, C.-N., & Li, H.-B. (2017). Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules, 22, 1481-1497.
[25] Bengardino, M.B., Fernandez, M. V., Nutter, J., Jagus, R. J., & Aguero, M. V. (2019). Recovery of bioactive compounds from beet leaves through simultaneous extraction: modelling and process optimization. Food Bioprod. Process., 118, 227-236.
[26] Valdés, A., Vidal, L., Beltran, A., Canals, A., & Garrigós, M. C. (2015). Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. J. Agric. Food Chem., 63, 5395-5402.
[27] Tsaltaki, C., Katsouli, M., Kekes, T., Chanioti, S., & Tzia, C. (2019). Comparison study for the recovery of bioactive compounds from Tribulus terrestris, Panax ginseng, Gingko biloba, Lepidium meyenii, Turnera diffusa and Withania somnifera by using microwave-assisted, ultrasound-assisted and conventional extraction methods. Ind. Crops Prod., 142, 111875.
[28] Xianzhe, Z., Fangping, Y., Chenghai, L., & Xiangwen, X. (2011). Effect of process parameters of microwave assisted extraction (MAE) on polysaccharides yield from Pumpkin. J. Northeast Agric. Univ., 8, 79-86.
[29] Chen, Y., Xie, M.Y., & Gong, X.F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng., 81, 162-170.
[30] He, B., Zhang, L. L., Yue, X. Y., Liang, J., Jiang, J., Gao, X. L., & Yue, P. X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem., 204, 70-76.
[31] Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2020). Effects of binary solvent system on radical scavenging activity and recovery of verbascoside from Lemon verbena leaves. J. Hum. Environ. Health Promot., 62(2), 69-76.
[32] Zhao, C.-N., Zhang, J. J., Li, Y., Meng, X., & Li, H. B. (2018). Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules, 23(10), 2498.