[1] Wang, H., Hao, L., Wang, P., Chen, M., Jiang, S., & Jiang, S. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll., 63, 437-446.
[2] Celebioglu, A., Topuz, F., Yildiz, Z. I., & Uyar, T. (2019). One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym., 207, 471-479.
[3] Cristescu, R., Visan, A., Socol, G., Surdu, A. V., Oprea, A. E., Grumezescu, A. M., et al. (2016). Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Appl. Surf. Sci. 374, 290-296.
[4] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2021). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll., 112, 106339.
[5] Ojagh, S. M., Rezaei, M., Razavi, S. H. Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120(1), 193-198.
[6] Makwana, S., Choudhary, R., Dogra, N., Kohli, P., Haddock, J. (2014). Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT-Food Sci. Technol., 57(2), 470-476.
[7] Rieger, K. A., & Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym., 113, 561-568.
[8] Altan, A., Aytac, Z., Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocoll., 81, 48-59.
[9] Weiss, J., Gaysinsky, S., Davidson, M., & McClements, J. (2009). Nanostructured encapsulation systems: food antimicrobials. In Global issues in food science and technology (pp. 425-479). Academic Press.
[10] Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670-5703.
[11] Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006.
[12] Aytac, Z., Ipek, S., Durgun, E., Tekinay, T. and Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem., 233, 117-124.
[13] Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A., Sammon, C., Cabedo, L., Torres-Giner, S., et al. (2018). Preparation and characterization of electrospun food biopackaging films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) derived from fruit pulp biowaste. Front. Sustain. Food Syst. 2, 38.
[14] Alehosseini, A., Gómez-Mascaraque, L. G., Martínez-Sanz, M., & López-Rubio, A. (2019). Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll., 87, 758-771.
[15] Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J. Ind. Eng. Chem. 24, 1-13.
[16] Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym., 80(2), 413-419.
[17] Liverani, L., Lacina, J., Roether, J. A., Boccardi, E., Killian, M. S., Schmuki, P., et al. (2018). Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact. Mater. 3(1), 55-63.
[18] Ramalingam, R., Dhand, C., Leung, C. M., Ong, S. T., Annamalai, S. K., Kamruddin, M., et al. (2019). Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater. Sci. Eng. C. 98, 503-514.
[19] Ardekani-Zadeh, A. H., & Hosseini, S. F. (2019). Electrospun essential oil-doped chitosan/poly (ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydr Polym., 223, 115108.
[20] Rieger, K. A., & Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym., 113, 561-568.
[21] Qian, Y., Zhang, Z., Zheng, L., Song, R. and Zhao, Y. (2014). Fabrication and characterization of electrospun polycaprolactone blended with chitosan-gelatin complex nanofibrous mats. J. Nanomater. 2014, p.1.
[22] ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
[23] ASTM. (2005). Standard test method for water vapour transmission of materials (E 96-05). Philadelphia, PA, USA.
[24] Yao, Z. C., Chang, M. W., Ahmad, Z. & Li, J. S. (2016). Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J. Food Eng, 191, 115-123.
[25] Deng, L., Kang, X., Liu, Y., Feng, F., & Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem., 231, 70–77.
[26] Van der Schueren, L., Steyaert, I., De Schoenmaker, B., & De Clerck, K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym., 88(4), 1221-1226.
[27] Aydogdu, A., Sumnu, G., & Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym., 208, 241-250.
[28] Zou, Y., Zhang, C., Wang, P., Zhang, Y., & Zhang, H. (2020). Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr Polym., 247, 116711.
[29] Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll., 79, 158-169.
[30] Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly (ε-caprolactone) nanofibrous webs morphology. J. Nanomater. 2011, 31.
[31] De Silva, R. T., Dissanayake, R. K., Mantilaka, M. P. G., Wijesinghe, W. S. L., Kaleel, S. S., Premachandra, T. N., ... & de Silva, K. N. (2018). Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Appl. Mater. Interfaces. 10(40), 33913-33922.
[32] Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., & Ardeshirylajimi, A. (2015). PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym., 118, 133-142.
[33] Koosha, M., & Mirzadeh, H. (2015). Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res A. 103(9), 3081-3093.
[34] Xue, J., He, M., Liu, H., Niu, Y., Crawford, A., Coates, P. D., et al. (2014). Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 35(34), 9395-9405.
[35] Fadaie, M., Mirzaei, E., Geramizadeh, B. & Asvar, Z. (2018). Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym., 199, 628-640.
[36] Shi, R., Geng, H., Gong, M., Ye, J., Wu, C., Hu, X., et al. (2018). Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J. Colloid Interface Sci. 509, 275-284.
[37] Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym., 84(1), 477-483.
[38] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bionanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll., 44, 172-182.
[39] Zaman, H. U., & Beg, M. D. H. (2015). Improvement of physico-mechanical, thermomechanical, thermal and degradation properties of PCL/gelatin biocomposites: Effect of gamma radiation. Radiat. Phys. Chem. 109, 73-82.
[40] Zhang, L., Liu, Z., Sun, Y., Wang, X., & Li, L. (2020). Effect of α-tocopherol antioxidant on rheological and physicochemical properties of chitosan/zein edible films. LWT, 118, 108799.
[41] Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., ... & Li, Y. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll., 61, 662-671.
[42] Reshmi, C. R., Sundaran, S. P., Juraij, A., & Athiyanathil, S. (2017). Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation. RSC Adv. 7(4), 2092-2102.
[43] Hosseini, S. F., & Gómez-Guillén, M. C. (2018). A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci. Technol, 79, 125-135.
[44] Liu, F., Guo, R., Shen, M., Wang, S., & Shi, X. (2009). Effect of processing variables on the morphology of electrospun poly [(lactic acid)‐co‐(glycolic acid)] nanofibers. Macromol. Mater. Eng. 294(10), 666-672.
[45] Joseph, C. S., Prashanth, K. H., Rastogi, N. K., Indiramma, A. R., Reddy, S. Y., & Raghavarao, K. S. M. S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioproc Tech, 4(7), 1179-1185.
[46] Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll., 33(2), 327-335.
[47] Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym., 83(2), 940-946.
[48] Ko, J., Cho, K., Han, S. W., Sung, H. K., Baek, S. W., Koh, W. G., et al. (2017). Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting. Colloids Surf. B. 158, 287–294.
[49] Farahmandghavi, F., Imani, M., & Hajiesmaeelian, F. (2019). Silicone matrices loaded with levonorgestrel particles: Impact of the particle size on drug release. J. Drug Deliv. Sci. Technol, 49, 132-142.
[50] Miguel, S. P., Sequeira, R. S., Moreira, A. F., Cabral, C. C., Mendonça, A. G., Ferreira, P., et al. (2019). An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm, 139, 1-22.
[51] Li, Z., Zhou, P., Zhou, F., Zhao, Y., Ren, L., & Yuan, X. (2018). Antimicrobial eugenol-loaded electrospun membranes of poly (ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids Surf. B. 162, 335-344. [52] Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M., & Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym., 259, 117640.
[53] Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J. Agric. Food Chem., 61 (34), 8156-8165.
[54] Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67, 1162-1169.
[55] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94, 223-253.
[56] Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem., 55(19), 7879-7885.
[57] Ouattara, B., Simard, R. E., Holley, R. A., Piette, G. J. P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 37(2-3), 155-162.
[58] Shan, B., Cai, Y. Z., Brooks, J. D., & Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117(1), 112-119.
[59] Kim, J. M., Marshall, M. R., Cornell, J. A., III, J. P., & Wei, C. I. (1995). Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 60(6), 1364-1368.