[1]. Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends Food Sci. Technol., 21(4), 168–180.
[2]. Bordoloi, A., Singh, J., & Kaur, L. (2012). In vitro digestibility of starch in cooked potatoes as affected by guar gum: microstructural and rheological characteristics. Food Chem., 133(4), 1206–1213.
[3]. Dartois, A., Singh, J., Kaur, L., & Singh, H. (2010). Influence of guar gum on the in vitro starch digestibility-rheological and microstructural characteristics. Food Biophys., 5(3), 149–160.
[4]. Singh, J., Kaur, L., & McCarthy, O. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review. Food Hydrocoll., 21(1), 1–22.
[5]. Yousefi, A., & Razavi, S.M.A. (2015). Dynamic rheological properties of wheat starch gels as affected by chemical modification and concentration. Starch-Stärke, 67(7-8), 567–576.
[6]. Yousefi, A., Razavi, & S.M.A. (2015). Steady shear flow behavior and thixotropy of wheat starch gel: impact of chemical modification, concentration and saliva addition. J. Food Process Eng., 39(1), 31–43.
[7]. Han, J.-A., & BeMiller, J.N. (2007). Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym., 67(3), 366–374.
[8]. Wolf, B.W., Bauer, L.L, & Fahey, G.C. (1999). Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch. J. Agric. Food Chem., (47), 4178–4183.
[9]. Koo, S.H., Lee, K.Y., Lee, H.G. (2010). Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocoll., 24(6), 619–625.
[10]. Chung, H.-J., Shin, D.-H., & Lim, S.-T. (2008). In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int. 41(6), 579–585.
[11]. Nguyen, G. T., & Sopade, P. A. (2018). Modeling starch digestograms: Computational characteristics of kinetic models for in vitro starch digestion in food research. Compr. Rev. Food Sci. Food Saf., 17(5), 1422-1445.
[12]. Das, A., Ben-Menachem, T., Farooq, F.T., Cooper, G.S., Chak, A., Sivak, M.V., & Wong, R.C. (2008). Artificial neural network as a predictive instrument in patients with acute nonvariceal upper gastrointestinal hemorrhage. Gastroenterology,134, 65–74.
[13]. Song, W., & Wu, Y. (2017). Application of Fuzzy Neural Network in Diagnosis of Gastrointestinal System Diseases. Adv. Eng. Res., 130, 1454-1458.
[14]. Al-Kasasbeh, R., Korenevskiy, N., Alshamasin, M., Ionescou, F., & Smith, A. (2013). Prediction of gastric ulcers based on the change in electrical resistance of acupuncture points using fuzzy logic decision-making. Comput. Methods Biomech. Biomed. Engin., 16(3), 302-313.
[15]. Maldonado-Valderrama, J., Terriza, J. H., Torcello-Gómez, A., & Cabrerizo-Vilchez, M. A. (2013). In vitro digestion of interfacial protein structures. Soft Matter, 9(4), 1043-1053.
[16] Olawoye, B., Fagbohun, O. F., Gbadamosi, S. O., & Akanbi, C. T. (2020). Succinylation improves the slowly digestible starch fraction of cardaba banana starch. A process parameter optimization study. Artif. Intell. Agric., 4, 219-228.
[17] Olawoye, B., Gbadamosi, S. O., Otemuyiwa, I. O., & Akanbi, C. T. (2020). Improving the resistant starch in succinate anhydride‐modified cardaba banana starch: A chemometrics approach. J. Food Process. Preserv., 44(9), e14686.
[18]. Johnson, D.P. (1969). Spectrophotometric determination of the hydroxypropyl group in starch ethers. Anal. Chem., 41, 859–860.
[19]. Jackson, M.L. (1967). Soil Chemical Analysis, Ed. M.L. Jackson, Prentice Hall of India, Pvt. Ltd, New Delhi, 151-154.
[20]. Yousefi, A., & Razavi, S.M.A. (2016). Steady shear flow behavior and thixotropy of wheat starch gel: Impact of chemical modification, concentration and saliva addition. J. Food Process Eng., 39(1), 31-43.
[21]. Wang, L.X. (1997). A course in fuzzy systems and control. Prentice-hall international, Inc, 153-167.
[22]. Hung, P.V., & Morita, N. (2005). Physicochemical properties of hydroxypropylated and cross-linked starches from A-type and B-type wheat starch granules. Carbohydr. Polym., 59, 239-246.
[23]. Sang, Y., Seib, P.A., Herrera, A.I., Prakash, O., & Shi, Y.C. (2010). Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chem., 118, 323-327.
[24]. Sanz, T., & Luyten, H. (2006). Release, partitioning and stability of isoflavones from enriched custards during mouth, stomach and intestine in vitro simulations. Food Hydrocoll., 20, 892-900.
[25]. Ioannou, I., Perrot, N., Curt, C., Mauris, G., & Trystram, G. (2004). Development of a control system using the fuzzy set theory applied to a browning process–a fuzzy symbolic approach for the measurement of product browning: development of a diagnosis model–part I. J. Food Eng., 64, 497-506.
[26]. Vaquiro, H.A., Bon, J., & Diez, J. L. (2008). Fuzzy logic application to drying kinetics modeling. 17th IFAC World Congress, COEX, Korea, South, 2206-2211.
[27]. Khodabakhshaghdam, S., Yousefi, A., Mohebbi, M., Razavi, S.M.A., Orooji, A., & Akbarzadeh-Totonchi, M.R. (2015). Modeling for drying kinetics of papaya fruit using fuzzy logic table look-up scheme. Int. Food Res. J., 22(3), 1234-1239.