[1] Sharifi, A., Niakousari, M., Maskooki, A., & Mortazavi, S.A. (2015). Effect of spray drying conditions on the physicochemical properties of barberry (Berberis vulgaris) extract powder. Int. Food
Res. J., 22, 2364-2370.
[2] Meliania, N., El.Amin. Dib, M., Allali, H. & Tabti, B. (2011). Hypoglycemic effect of Berberis vulgaris L. in normal and streptozotocin– induced diabetic rats.
Asian Pac. J. Trop. Biomed., 1 (6), 468-471.
[3] Amuie, A.M., Mojahed, M., & Mojahed, M. (2018). Entrepreneurship package for planting barberry by dryland method. (1nd ed.). Tehran, I.R. Iran: sadegh Publisher. [In Persian].
[4] Al-Dabbas, M.M., Suganuma, T., Kitahara, K., Xing Hou, D., & Fujii, M. (2006). Cytotoxic, antioxidant and antibacterial activities of Varthemia iphionoides Boiss Extracts. J Ethnopharmacol. 108, 287-293.
[5] Pantelidis, G. E, Vasilakakis, M., Manganaris, G.A., & Diamantidis, G. (2006). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem., 102, 777–783.
[6] Giusti, M.M., Rodriguez-Saona, L.E., & Wrolstad, R.E. (1999). Molar absorptivity and color characteristics of acylated and non acylated Pelargonidin-based anthocyanins. J. Agr. Food Chem., 47, 4631–4637.
[7] Razi., S.M., Motamedzadegan, A., Shahidi., S.A., & Rashidinejad, A. (2018). Basil Seed Gum Enhances the Rheological and Physical Properties of Egg Albumin Foams. J. Food Nutr. 8(6), 2575-7091.
[8] Sadahira M.S., Rodrigues M.I., Akhtar M., Murray B.S., & Netto F.M. (2016). Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocoll. 58: 1-10.
[9] Arzeni, C., Pérez,O. E., & Pilosof, A.M (2012) Functionality of egg white proteins as affected by high intensity ultrasound. Food Hydrocoll. 29: 308-316.
[10] Belitz, H.D., Grosch, W., & Schieberle, W. (2009). Food Chemist. Springer-Verlag,Germany.
[11] Miquelim, J.N., Lannes S.C., & Mezzenga, R. (2010). PH Influence on the stability of foams with protein-polysaccharide complexes at their interfaces. Food Hydrocoll. 24: 398-405.
[12] van den Berg, M., Jara, F.L., & Pilosof, A.M. (2015) Performance of egg white and hydroxyl propyl methylcellulose mixtures on gelation and foaming.Food Hydrocoll., 48, 282-291.
[13] Shrestha, A.K., Ua-Arak, T., Adhikari, B.P., Howes, T., & Bhandari, B.R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop., 10, 661-673.
[14] Jakubczyk, E., Gondek, E., & Tambor, K. (2011). Characteristics of selected functional properties of apple powders obtained by the foam-mat drying method. In: Proceeding of the 11th Int. Cong. Eng. Food. (pp. 22-26), Athens, Greece.
[15] Damodaran, S. (2005). Protein Stabilization of Emulsions and Foams. J. Food Sci., 70, 54-66.
[16] Hardy, Z., & Jideani, V.A. (2017). Foam-mat drying technology: A review. Critical Reviews in Food Sci & Nut., 57, 2560-2572.
[17] Azizpour, M., Mohebbi, M., & Khodaparast, M.H.H. (2016). Effects of foam-mat drying 676 temperature on physico-chemical and microstructural properties of shrimp powder. Innov. Food Sci. Emerg. Technol., 34, 122-126.
[18] Widyastuti, W., Srianta, I. (2011). Development of functional drink based on foam-mat dried779 Papaya (Carica papaya L.): Optimisation of foam-mat drying process and its ormulation. Int. J. Food Saf. Nutr. Publ. Health., 4, 167-176.
[19] Tavakolipour, H., Sharifi, A., & Salaminia, M. (2011). Determining effective parameters during rhubarb hot air-drying process and the possibility of powder preparation. Iranian J. Food Sci. Technol., 3, 59-67. [In Persian].
[20] Kadam Dattaterya, M., & Blasubramanlan, S. (2010). Foam mat drying of tomato juice, J. Food Process. Preserv., 35, 488-495.
[21] Noshad, M., Hojjati, M., Ghasemi, P., & Mostaan, A. (2020). Optimization and modeling of mass transfer kinetics during foam-mat drying of date syrup. Innov. Food Technol., 4, 535-550. [In Persian].
[22] Bagheri, A., & Fadaei Noghani, V. (2018). Determination of optimum conditions for spray-drying of peach juice-skim milk blend using response surface method. Innov. Food Technol., 5, 613-626. [In Persian].
[23] Abbasi, E., & Azizpour, M. (2015). Evaluation of Physicochemical Properties of Foam‒mat Sour Cherry Powder. LWT‒Food Sci. Technol., 68, 105‒110.
[24] Sharada, S. (2013). Studies on Effect of Various Operating Parameters and Foaming agents‒Drying of Fruits and Vegetables. Int. J. Mod. Eng. Res., 3, 1512‒1519.
[25] ISIRI, 2685. (2007). Fruit juices - test methods. Institute of Standards and Industrial Research of Iran. [In Persian].
[26] Razavi, S. M. A., Cui, S. W., Guo, Q., & Ding, H. (2014). Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocoll., 35,453-462.
[27] Wang, T., Tan, S.Y., Mutilangi, W., Plans, M., & Rodriguez-Saona, L. (2016). Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages. J. dairy sci., 99, 9461-9470.
[28] ATTRA (National Sustainable Agriculture Information Service). Food Dehydration Options, 2004. URL https://attra.ncat.org/product/food-dehydration-options. Accessed 12.07.2020
[29] Liang, Y., & Kristinsson, H.G. (2005). Influence of pH-Induced Unfolding and Refolding of Egg Albumen on Its Foaming Properties. J. Food Sci., 70, 222-230.
[30] Hu, Y., Liang, H., Xu, & Liang, H. (2016). Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein, Food Hydrocoll., 52, 213–220.
[31] Dunkwal, V., Jood, S., & Singh, S. (2007). Physico chemical properties and sensory evaluation of Pleurotussajorcaju powder as influenced by pretreatments and drying methods. Br. Food J., 109, 749-759.
[32] Cano-chauca, M., Straingheta, P.C., Sardagna, L.D., & cal-vidal, J. (2004). Mango juice dehydration spraying using different carries and functional chavacterization. In: Proceeding of the 14th Int. Drying Dymposium. (pp. 2005-2012), Saõ Paulo, Brazil.
[33] Koca, N., Erbay, Z., & Kaymak-Ertekin, F. (2015). Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. J. dairy sci., 98, 2934-2943.
[34] Aghbashlo, M., Kianmehr, M.H., & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers. Manag., 49, 2865–2871.
[35] Moniri, H., Farahmandfar, R., & Motamedzadeghan, A. (2020). Investigation of hot air and foam-mat dried cress seed gum by FT-IR, zeta potential, steady shear viscosity, dynamic oscillatory behavior, and other physical properties. Food Sci. Nutri., 8, 2143–2155.
[36] Raharitsifa, N., & Ratti, C. (2010). Foam‐mat freeze‐drying of apple juice part 1: Experimental data and ann simulations. J. Food Process.Eng., 33, 268-283.
[37] Dickinson, E. (2015). Structuring of colloidal particles at interfaces and the
relationship to food emulsion and foam stability. J. Colloid Interface Sci., 449, 38-45.
[38] Paseban, A. (2012). Optimization of process parameters for foam mat drying of mushroom (Agaricus bisporus) puree. Mashhad, Iran: Ferdowsi University, Department of Food Engineering. [In Persian].
[39] Marinova, K.G., Basheva, E.S., Nenova, B., Temelska, M., Mirarefi, A.Y., Campbell, B. & Ivanov, I.B. (2009). Physicochemical factors controlling the foamability and foam stability of milk proteins; Sodium caseinate and whey protein concentrates. Food Hydrocoll., 23, 1864-1876.
[40] Martínez-Padilla, L.P., García-Rivera, J.L., Romero-Arreola, V., & Casas-Alencáster, N.B. (2015). Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. J. Food Eng., 156, 22-30.
[41] Foegeding, E.A., Davis, J.P., Doucet, D., & McGuffey, M. K. (2002). Advances in modifying and understanding whey protein functionality. Trends in Food Sci. Technol., 13(5), 151-159.
[42] Salahi, M.R.; Mohebbi, M.; & Taghizadeh, M.(2015). Foam-mat drying of cantaloupe (Cucumis melo): optimization of foaming parameters and investigating drying characteristics. J. Food Process. Preserv., 39, 1798–1808.
[43] O'Sullivan, J.J., Schmidmeier, C., Drapala, K.P., O'Mahony, J.A., & Kelly, A.L. (2017). Mnitoring of pilot-scale induction processes for dairy powders using inline and offline approaches. J. Food Eng., 197, 9-16.
[44] Kim, E.H.J., Chen, X.D., & Pearce, D. (2002). Surface characterization of four industrial spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids Surf. B., 26, 197-212.
[45] Bragadottir, M., Reynisson, E., Porarinsdottir, K.A., & Arason, S. )2007(. Stability of fish powder made from saithe (Pollachius virens) as measured by lipid oxidation and functional properties. J. Aquat. Food Prod. Technol., 16, 115-136.
[46] Damodaran, S., & Parkin, K. (2017). Fennema's Food Chemistry, (5th ed.). New York: Marcel Dekker Inc.
[47] Wilson, R.A., Dattatreya, M.K., Chadha, S., Grewal, M.K., & Sharma, M.(2014). Evaluation of physical and chemical properties of foam-mat dried mango (Mangifera indica) powder during storage. J. Food Process. Preserv., 38, 1866– 1874.
[48] Franco, T.S ., Perussello, C.A., Ellendersen, L.N., & Masson, M.L. (2016).Effects of foam mat drying on physicochemical and microstructural
properties of yacon juice powder. LWT- Food Sci. Technol., 66,503–513.
[49] Harmayani, E., Winari, S., & Nuvismanto, R. (2011). Preparation of Inulin Powder from Dioscorea Esculenta Tuber with foam Mat Drying Method. In: Proceeding of the 12th ASEAN Food Conference. Bangkok, Thailand.
[50] Chun, K.P.; Nazimah, S.A.H.; Chin, P.T.; Mirhosseini, H.; Russly, A.R.; & Gulam, R. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT-
Food Sci. Technol., 43, 343–349.
[51] Zotarelli, M.F., da Silva, V.M., Durigon, A., Hubinger, M.D., & Laurindo, J.B., (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technol., 305, 447-454.
[52] Khalilian, S., Shahidi, F., Mohebi, M., & Khalilian, M. (2013). Evaluation of drying conditions on several characteristics of foam-mat pomegranate concentrate powder. In: proceeding of the 21th Natl. Cong. Food Sci. Technol., Shiraz, Iran. [In Persian].
[53] Walton, D.E. (2000). The morphology of spray-dried particles, a qualitative view. Dry. Technol., 18, 1943– 1986.
[54] Sangamithra, A., Venkatachalam, S., Gabriela, S., & Kuppuswamy, K. (2015). Foam mat drying of food materials: a Review. J. Food Process. Preserv., 39, 3165–3174.
[55] Jangam, S.V., Law, C.L., & Mujumdar, A.S. (2010). Drying of food, vegetables and fruits (1st ed.). Singapore: TPR Group.
[56] Filippove M.P. (1992). Practical infrared spectroscopy of pectin substance. Food Hydrocoll., 6, 115-142.
[57] Mousavi S.E., Mousavi, M., & Kiani, H. (2020). Characterization and identification of sediment forming agents in barberry juice. Food Chem., 312,126056.
[58] Coates, J. (2006). Interpretation of infrared spectra, a practical approach. In: R.A. Meyers (Ed.). Encyclopedia of Analytical Chemistry (2nd ed., pp. 1-23). Hoboken: John Wiley & Sons, Inc.
[59] Rafe, A., & Razavi, S.M.A. (2015). Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy. Int. J. Food Prop., 18, 2652–2664.
[60] Kato. A., & Takagi, T. (1988). Formation of intermolecular. beta. -sheet structure during heat denaturation of ovalbumin. J. Agric. Food Chem., 36, 1156-1159.
[61] Bakkialakshmi, S., & Barani, V. (2013). FTIR study on the interaction of quercetin and amantadine with egg albumin. Inter. J. Pharm. Chem. Bio. Sci., 3, 559-64.
[62] Naji-Tabasi, S., Razavi, S. M. A., Mohebbi, M., & Malaekeh-Nikouei, B. (2016). New studies on basil (Ocimum bacilicum L.) seed gum: Part I-Fractionation, physicochemical and surface activity characterization. Food Hydrocoll., 52, 350–358.