[1] Jafari, S. M., & Kashaninejad, M. (2010). Physical properties of food. Gorgan University of Agricultural Sciences and Natural Resources & Makhtumgholi faraghi Press, 1th Edition, 236-237. (In Persian).
[2] Falguera, V., & Ibarz, A. (2014). Juice processing: quality, safety and value-added opportunities. CRC Press.
[3] Tajchakavit, S., & Ramaswamy, H. (1997). Thermalvs. Microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT-Food Sci Technol, 30(1), 85-93.
[4] Demirdoven, A., & Baysal, T. (2016). Inactivation effect of microwave heating on pectin methylesterase in orange juice. Ukr. Food J., 5(2), 248-261.
[5] Stratakos, A. C., Delgado-Pando, G., Linton, M., Patterson, M. F., & Koidis, A. (2016). Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chem., 190, 622-628.
[6] Ramaswamy, H. S., & Lin, M. (2011). Influence of system variables on the heating characteristics of water during continuous flow microwave heating. Int. J. Microw. Sci. Technol.
[7] Knoerzer, K., Regier, M., & Schubert, H. (2017). Measuring temperature distributions during microwave processing. In The microwave processing of foods (pp. 327-349). Woodhead Publishing.
[8] Salvi, D., Ortego, J., Arauz, C., Sabliov, C., & Boldor, D. (2009). Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating. J. Food Eng., 93(2), 149-157.
[9] Siguemoto, É. S., Pereira, L. J., & Gut, J. A. W. (2018). Inactivation kinetics of pectin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal microwave effects. Food Bioprocess Tech., 11(7), 1359-1369.
[10] Kimball, D. A. (1999). Citrus processing: a complete guide. Kluwer Academic/Plenum Publishers.
[11] Seyedabadi, M., Aghajanzadeh Suraki, S., Kashaninejad, M., & Ziaiifar, A. M. (2017). Investigation of the effect of microwave on some physicochemical properties of sour orange juice. Food Sci. Technol.,14(1), 17-29. (In Persian).
[12] Tajchakavit, S., & Ramaswamy, H. (1995). Continuous-flow microwave heating of orange juice: evidence of nonthermal effects. J Microwave Power EE, 30(3), 141-148.
[13] Heldman, D. R. (2012). Food process engineering. Springer Science & Business Media.
[14] Matthew Gerbo, N., Boldor, D., & Mirela Sabliov, C. (2007). Design of a measurement system for temperature distribution in continuous-flow microwave heating of pumpable fluids using infrared imaging and fiber optic technology. J Microwave Power EE, 42(1), 55-65.
[15] Kudra, T., Van, d. V., FR, Raghavan, G., & Ramaswamy, H. (1991). Heating characteristics of milk constituents in a microwave pasteurization system. J. Food Sci., 56(4), 931-934.
[16] Bento, L., Rein, P., Sabliov, C., Boldor, D., & Coronel, P. (2006). C Massecuite re-heating using microwaves. J. Am. Soc. Sugar Cane Technol., 26, 1-13.
[17] Coronel, P., Simunovic, J., & Sandeep, K. (2003). Temperature profiles within milk after heating in a continuous‐flow tubular microwave system operating at 915 MHz. J. Food Sci., 68(6), 1976-1981.
[18] Sabliov, C. M., Boldor, D., Coronel, P., & Sanders, T. H. (2008). Continuous microwave processing of peanut beverages. J Food Process Pres., 32(6), 935-945.
[19] Tribess, T. B., & Tadini, C. C. (2006). Inactivation kinetics of pectin methylesterase in orange juice as a function of pH and temperature/time process conditions. J. Sci. Food Agric., 86(9), 1328-1335.
[20] Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. J. Food Sci., 80(8), E1776-E1793.