[1] El-Ameir, Y. A. (2013). Spatial distribution and nutritive value of two Typha species in Egypt. Egypt J Bot., 53(1), 91–113.
[2] Akhtar, N., Hameed, M., & Ahmad, R. (2016). Structural and functional aspects of ionic relation in roots of Typha domingensis pers. ecotypes under salt stress. Pak J Bot., 48(6), 2195–2203.
[3] Rao, M. R. K., Saranya, Y., Divya, D., & Linn, A. C. (2016). Preliminary Phytochemical Analysis of Typha domingensis Rhizome Aqueous Extracts. Int. J. Pharm. Sci. Rev. Res., 37(1), 30–32.
[4] Naddaf, H., Esmaeilzadeh, S., Pourmehdi Borujeni, M.,& Sabiza, S. (2016) .Histopathologic evaluation of Typha angustifolia pollen extract on experimental full thickness wound healing in mice. Iran Vet J., 54,98-108. [In Persian].
[5] Zhao, J. L., Zhang, M., & Zhou, H. L. (2019). Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules., 24(8), 1605.
[6] Mazarei, F., Jooyandeh, H., Noshad, M., & Hojjati, M. (2017). Polysaccharide of caper ( Capparis spinosa L.) Leaf : Extraction optimization , antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol., 95, 224–231.
[7] Tadayoni, M., Sheikh-Zeinoddin, M., & Soleimanian-Zad, S. (2015). Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int J Biol Macromol., 72, 179–184.
[8] Sorourian, R., Khajehrahimi, A. E., Tadayoni, M., Azizi, M. H., & Hojjati, M. (2020). Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. Int J Biol Macromol., 160, 758–768.
[9] Saravana, P. S., Cho, Y. J., Park, Y. B., Woo, H. C., & Chun, B. S. (2016). Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym., 153, 518–525.
[10] Han, Q. H., Liu, W., Li, H. Y., He, J. L., Guo, H., Lin, S., Zhao, L., Chen,H., Liu, Y.W., Wu, D.T., Li,S.Q., & Qin, W. (2019). Extraction optimization, physicochemical characteristics, and antioxidant activities of polysaccharides from kiwifruit (Actinidia chinensis Planch.). Molecules., 24(3),461.
[11] Cui, F. J., Qian, L. S., Sun, W. J., Zhang, J. S., Yang, Y., Li, N., Zhuang, H.N., & Wu, D. (2018). Ultrasound-Assisted Extraction of Polysaccharides from Volvariella volvacea: Process Optimization and Structural Characterization. Molecules., 23(7), 1706.
[12] Wang, L., Cheng, L., Liu, F., Li, T., Yu, Z., Xu, Y., & Yang, Y. (2018). Optimization of ultrasound-assisted extraction and structural characterization of the polysaccharide from pumpkin (Cucurbita moschata) seeds. Molecules., 23(5), 1207.
[14] Wei, Y., Cai, Z., Wu, M., Guo, Y., Tao, R., Li, R., Wang, P., Ma, A., & Zhang, H. (2020). Food Hydrocolloids Comparative studies on the stabilization of pea protein dispersions by using various polysaccharides. foodhyd, 98(July 2019), 105233.
[15] Pawar, H. A., Gavasane, A. J., & Choudhary, P. D. (2018). Extraction of polysaccharide from fruits of Cordia dichotoma G. Forst using acid precipitation method and its physicochemical characterization. Int. J. Biol. Macromol., 115, 871–875.
[16] Tan, C.; Wei, H.; Zhao, X.; Xu, C.; & Peng, J. Effects of Dietary Fibers with High Water-Binding Capacity and Swelling Capacity on Gastrointestinal Functions, Food Intake and Body Weight in Male Rats. Food Nutr. Res. 61 (1).
[17] Wang, L., Zhang, B., Xiao, J., Huang, Q., Li, C., & Fu, X. (2018). Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem., 249(January), 127–135
[18] Mutaillifu, P., Bobakulov, K., Abuduwaili, A., Huojiaaihemaiti, H., Nuerxiati, R., Aisa, H. A., & Yili, A. (2020). Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int. J. Biol. Macromol., 144, 751–759
[19] Liu, W., Liu, Y., Zhu, R., Yu, J., Lu, W., Pan, C., Yao, W., & Gao, X. (2016). Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr. Polym., 147, 114–124.
[20] Sarmento, B., Ribeiro, A., Veiga, F., & Ferreira, D. (2006). Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surfaces B Biointerfaces., 53(2), 193–202
[21] Hosseini, S.M.H., Emam-Djomeh, Z., Razavi, S.H., Moosavi-Movahedi, A.A., Saboury, A.A., Mohammadifar, M.A., Farahnaky, A., Atri, M.S., & Van Der Meeren, P., (2013). Complex coacervation of β-lactoglobulin - κ-carrageenan aqueous mixtures as affected by polysaccharide sonication. Food Chem., 141(1), 215–222.
[22] Nakamura, A., Fujii, N., Tobe, J., Adachi, N., & Hirotsuka, M. (2012). Characterization and functional properties of soybean high-molecular-mass polysaccharide complex. Food Hydrocoll., 29(1), 75–84.
[23] Hojjati, M.; & Beirami-Serizkani, F.(2020). Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Water Soluble Polysaccharide from Cordia Myxa Fruits. J. Food Meas. Charact. 1-9.
[24] Akrami, M., Ghanbarzadeh, B., Purzafar, F., Mortazavi, A., Dinarvand, R., & Dehghannya J.(2016). Gum arabic-caseinate nanocomplexes bearing β-carotene (2): Studying of particle sizedistribution, zeta potential, morphology and encapsulation efficiency. JRIFST.,4(26), 763-778. [In Persian].
[25] Khoshmanzar, M., Ghanbarzadeh, B., Hamishekar, H., Sowti, M., & Rezayi Mokarram R.(2012). Investigation of effective parameters on particle size, zeta potential and steady rheological properties of colloidal system based on carrageenan-caseinate nanoparticles. JRIFST.,1(4), 252-272. [In Persian].
[26] Jahromi, M., Niakousari, M., Sharifi, A., & Kalantari, M.(2015). Investigating the physical and chemical properties of grape and date juice powders and dried fig extract. JIFT.,7(3), 85-94. [In Persian].
[27] Carr, R. L. (1965). Evaluating flow properties of solids. Chem. Eng., 18, 163–168.
[28] Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng., 84(2), 194–205.
[29] Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Su. M. J. (2010). Isolation and
characterisation of cell wall polysaccharides from legume by-products : Okara ( soymilk residue ), pea pod and broad bean pod. Food Chem., 122(1), 339–345.
[30] Rashid, F., Hussain, S., & Ahmed, Z. (2018). Extraction purification and characterization of galactomannan from fenugreek for industrial utilization. Carbohydr. Polym., 180, 88–95.
[31] Yuan, Y., Xu, X., Jing, C., Zou, P., Zhang, C., & Li, Y. (2018). Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym., 181(August 2017), 902–910.
[32] Trabelsi, I., Ktari, N., Triki, M., Bkhairia, I., Ben Slima, S., Sassi Aydi, S., Aydi, S., Abdeslam, A., & Ben Salah, R. (2018). Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int. J. Biol. Macromol., 111, 11–18.
[33] Chaharlang, M., Eskandari, M., & Eskandari, F. (2018). Optimization of polysaccharide extraction from Cucurbitamoschata and evaluation of physicochemical properties. JFST.,78, 263-274. [In Persian].
[34] Ognyanov, M.; Georgiev, Y.; Petkova, N.; Ivanov, I.; Vasileva, I.; & Kratchanova, M. (2018). Isolation and Characterization of Pectic Polysaccharide Fraction from in Vitro Suspension Culture of Fumaria Officinalis L. Int. J. Polym. Sci. 17-30.
[35] Akbari-Alavijeh, S.; Soleimanian-Zad, S.; Sheikh-Zeinoddin, M.; & Hashmi, S.(2018) Pistachio Hull Water-Soluble Polysaccharides as a Novel Prebiotic Agent. Int. J. Biol. Macromol., 107, 808–816.
[36] Bayar, N., Kriaa, M., & Kammoun, R. (2016). Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol., 92, 441–450.
[37] Zhong, Q., Wei, B., Wang, S., Ke, S., Chen, J., Zhang, H., & Wang, H. (2019). The antioxidant activity of polysaccharides derived from marine organisms: An overview. Marine Drugs,. 17(12) 674.
[ 38] Hajji, M., Hamdi, M., Sellimi, S., Ksouda, G., Laouer, H., Li, S., & Nasri, M. (2019). Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym., 206, 380–388.
[39] Yang, X., Wu, Y., Zhang, C., Fu, S., Zhang, J., & Fu, C. (2019). Extraction, structural characterization, and immunoregulatory effect of a polysaccharide fraction from Radix Aconiti Lateralis Preparata (Fuzi). Int. J. Biol. Macromol.,143, 314-324.
[40] Azmi, A. F. M. N., Mustafa, S., Hashim, D. M., & Manap, Y. A. (2012). Prebiotic activity of polysaccharides extracted from Gigantochloa Levis (buluh beting) shoots. Molecules., 17(2), 1635–1651.
[41] Jiang, L., Wang, W., Wen, P., Shen, M., Li, H., Ren, Y., Xiao, Y., Song,Q., Chen ,Y., Yu, Q., & Xie, J. (2020). Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll.,100, 105412.