Comparison of the effects of alkaline extraction and ultrasound methods on Physicochemical and functional properties of quinoa protein isolate

Document Type : Research Article


1 MSc student, Ferdowsi university of Mashhad

2 Professor, Department of Mechanical Engineering Biosystem Faculty of Agriculture, Ferdowsi university of Mashhad

3 Assistant Professor, Department of Food Additives, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran


In recent years much attention has been paid by researchers to the quinoa due to diverse functional properties, high nutritional value and gluten-free feature rather than other protein grains. The quinoa protein can be used as a nutritional supplement and a valuable food source for babies, children and adults in the formulation of sauces, sausages, soups, etc. The aim of this study has been comparing the effects of both alkaline extraction and ultrasound methods on the physicochemical and functional properties of quinoa protein isolate. Physicochemical properties includes Moisture content, fat, protein, carbohydrate, ash, weighted efficiency and color (L*,a*,b*), and functional properties including water and oil absorption capacity, foam production capacity and its stability, emulsifying capacity and its stability were examined . The results of the experiments showed that ultrasound assissted extraction without any effect on protein amount created higher extraction efficiency. It also showed the higher water absorption capacity (2/76 ml/g) and fat absorption capacity (4/63 ml/g) than the alkaline method. The alkaline method had better functions in foamability (foam production capacity 10/08% and its stability 38/88%) and emulsification properties (emulsifying capacity 17/57% and its stability 62/04%). The results have been showed that produced protein isolates have good functional properties and can be a substitute for other protein sources in different food formulations.
Keywords: foam, emulsifying capacity, color properties, extraction efficiency, gluten free

Graphical Abstract

Comparison of the effects of alkaline extraction and 
ultrasound methods on Physicochemical and functional properties of quinoa protein isolate


  • This research is the first report of the effect of ultrasound methods on the physicochemical and functional properties of quinoa protein isolate.


  • Ultrasound assisted extraction created higher extraction efficiency.


  • Alkaline extraction have been showed that produced protein isolates have good functional properties.


Main Subjects

[1] Kanu, P.J., Kerui, Z., Ming, Z.H., Haifeng, Q., Kanu, J.B., Kexue, Z. (2007). Sesame protein 11: Functional properties of sesame (Sesamum indicum L.) protein isolate as influenced by pH, temperature, time and ratio of flour to water during its production. Asian J. Biochem., 2, 289-301.
[2] Arogundade, L.A., Tshay, M., Shumey, D., Manazie, S. (2006). Effect of ionic strength and/or pH on extractability and physico-functional characterization of broad bean (Vicia faba L.) protein concentrate. Food Hydrocoll., 20, 1124-1134.
[3] Han, X.Z., Hamaker, B.R. (2002). Partial Leaching of Granule‐Associated Proteins from Rice Starch during Alkaline Extraction and Subsequent Gelatinization. Starch‐Stärke., 54, 454-460.
 [4] سپهوند، ن. ؛ سرهنگی، م. (1391) کینوآ گیاهی ارزشمند برای امنیت غذایی و کشاورزی پایدار در ایران. ویژه نامه دوازدهمین کنگره ژنتیک ایران، ص 1-5.
 [5] James, L.E.A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Elsevier Inc., 58, 1-31.
[6] Elsohaimy, S.A., Refaay, T.M., Zaytoun, M.A.M. (2015). Physicochemical and functional properties of quinoa protein isolate. Ann Agric. Sci., 60, 297-305.
[7] Nowak, V., Du, J., Charrondière, U.R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food chem., 193, 47-54.
[8] Vilkhu, K., Mawson, R., Simons, L., Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry: A review. Innov. Food Sci. Emerg. Technol., 9, 161-169.
[9] Mason, T.J., Paniwnyk, L., Lorimer, J.P. (1996). The uses of ultrasound in food technology. Ultrason. sonochem., 3, 253-260.
[10] Carciochi, R.A., Manrique, G.D., Dimitrov, K. (2015). Optimization of antioxidant phenolic compounds extraction from quinoa (Chenopodium quinoa) seeds. J. Food Sci. Technol., 52, 4396-4404.
[11] بصیری، ش. ؛ شهیدی، ف. ؛ کدخدایی، ر. ؛ فرهوش، ر. (1390) بررسی تاثیر امواج فراصوت و روش­های پیش فراوری بر استخراج روغن از هسته انار. فصلنامه علوم و صنایع غذایی، جلد 8، شماره 31، ص 115-122.
[12] Ji, J.B., Lu, X.H., Cai, M.Q., Xu, Z.C. (2006). Improvement of leaching process of Geniposide with ultrasound. Ultrason. Sonochem., 13, 455-462.
[13] Stanisavljević, I.T., Lazić, M.L., Veljković, V.B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason. Sonochem., 14, 646-652.
[14] Lin, M.J.Y., Humbert, E.S., Sosulski, F.W. (1974). Certain functional properties of sunflower meal products. J. Food Sci., 39, 368-370.
[15] Papalamprou, E.M., Doxastakis, G.I., Kiosseoglou, V. (2010). Chickpea protein isolates obtained by wet extraction as emulsifying agents. J. Sci. Food Agri., 90, 304-313.
[16] بخشی مقدم، ف. ؛ میلانی، ا. ؛ مرتضوی، ع. ؛ مشکانی، م. (1392) تاثیر روش­های استخراج بر ویژگی­های عملکردی ایزوله پروتئین نخود. فصلنامه علوم و صنایع غذایی، جلد 10، شماره 38، ص 11-20.
[17] Moongngarm, A., Sasanam, S., Pinsiri, W., Inthasoi, P., Janto, S., Pengchai, J. (2014). Functional properties of protein concentrate from black cowpea and its application. Am. J. Appl. Sci., 11, 1811.
[19] AOAC (Association of official analytical chemists). (1990). Official method of analysis. Assoc Anal Chem.
[20] Beuchat, L.R. (1977). Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem., 25, 258-261.
[21] Rostagno, M.A., Palma, M., Barroso, C.G. (2003). Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr., 1012, 119-128.
[22] Valenzuela, C., Abugoch, L., Tapia, C., Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. Int. J. Food Sci. Technol., 48, 843-849.
[23] Abugoch, L. E., Romero, N., Tapia, C.A., Silva, J., Rivera, M. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. J. Agric. Food chem., 56, 4745-4750.
[24] Wrolstad, R.E., Smith, D.E. (2010). Color analysis. Food Anal. 4th ed., Springer Sci. New York, 573-587.
[25] Jovanovich, G., Poppa, M.C., Giner, S.A., Añón, M.C. (2003). Water uptake by dehydrated soy protein isolates: Comparison of equilibrium vapour sorption and water imbibing methods. J. Food Eng., 56, 331-338.
[26] Lawal, O.S. (2004). Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chem., 86, 345-355.
[27] Kinsella, J.E. (1979). Functional properties of Soy Protein. J. Am. Oil Chem. Soc., 56, 242-249.
[28] Oladele, A.K., Aina, J.O. (2007). Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). African J. Biotechnol., 6, 2473-2476.
[29] Kaur, M., Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem., 102, 366-372.
 [30] Moure, A., Sineiro, J., Domínguez, H., Parajó, J.C. (2006). Functionality of oilseed protein products: a review. Food Res. Int., 39, 945-963.