[1] Noshad, M., Mohebbi, M., Koocheki, A., Shahidi, F. (2015). Microencapsulation of vanillin by spraydrying using soy protein isolate–maltodextrin as wall material. Flavour Fragr. J., 30(5), 387–391.
[2] Ghorani, B.,Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll., 51, 227–240.
[3] Manojlović, V., Nedović, V., Kailasapathy, K., Zuidam, N. (2011). Encapsulation of Probiotics for use in Food Products. in: Zuidam, N. ,Nedović, V.(Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing,Springer.,New York, pp 269–302.
[4] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Sci., 1,1806–1815.
[5] López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll., 28(1), 159–167.
[6] López-Rubio, A., Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov Food Sci Emerg Technol., 13, 200–206.
[7] Xu, X., Jiang, L., Zhou, Z., Wu, X., Wang, Y. (2012). Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Appl Mater Interfaces., 4(8), 4331–4337.
[8] Wongsasulak, S., Patapeejumruswong, M., Weiss, J., Supaphol, P., Yoovidhya, T. (2010). Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng., 98(3), 370–376.
[9] Bürck, J., Heissler, S., Geckle, U., Ardakani, M. F., Schneider, R., Ulrich, A. S., Kazanci, M. (2013). Resemblance of electrospun collagen nanofibers to their native structure. J Am Chem Soc Langmuir., 29(5), 1562–1572.
[10] Songchotikunpan, P., Tattiyakul, J., Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol., 42(3), 247–255.
[11] Brahatheeswaran, D., Mathew, A., Aswathy, R. G., Nagaoka, Y., Venugopal, K., Yoshida, Y., Sakthikumar, D. (2012). Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater., 7(4), 45001.
[12] Nieuwland, M., Geerdink, P., Brier, P., Eijnden, P. Van Den, Henket, J. T. M. M., Langelaan, M. L. P., Martin, A. H. (2013). Food-grade electrospinning of proteins. Innov Food Sci Emerg Technol., 20, 269–275.
[13] Kun, Y., Lule, U. S., Xiao-Lin, D. (2006). Lycopene: Its properties and relationship to human health. Food Rev Int., 22(4), 309–333.
[14] Marze, S. (2015). Bioaccessibility of lipophilic micro-constituents from a lipid emulsion. Food Funct., 6(10), 3218–3227.
[15] Kabak, B., Ozbey, F. (2012). Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. J Food Compos Anal., 27(1), 21–31.
[16] Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core-shell fibers. Mater. Sci. Eng. C., 32(5), 1037–1042.
[17] Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., Lagaron, J. M. (2010). Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci., 75(6), 69–79.
[18] Li, Y., Lim, L.T., Kakuda, Y. (2009). Electrospun Zein Fibers as Carriers to Stabilize (−)-Epigallocatechin Gallate. J Food Sci., 74(3), C233--C240.
[19] Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fiber Polym., 17(5), 769–777.
[20] Yao, C., Li, X., Song, T. (2007). Electrospinning and crosslinking of zein nanofiber mats. J Appl Polym Sci., 103(1), 380–385.
[21] Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chem., 136(2), 1013–1021.
[22] Selling, G. W., Biswas, A., Patel, A., Walls, D. J., Dunlap, C., Wei, Y. (2007). Impact of Solvent on Electrospinning of Zein and Analysis of Resulting Fibers. Macromol Chem Phys., 208(9), 1002–1010.
[23] Mehta, S. K., Bhawna, Bhasin, K. K., Kumar, A. (2009). Solubilization and conformational behavior of Zein in aqueous solution of dodecyldimethylethylammonium bromide (DDAB). Colloids Surf A Physicochem Eng Asp., 346(1), 195–201.
[24] Neo, Y. P. (2014). Electrospinning as a Novel Encapsulation Method for Food Applications. Ph.D. Thesis, University of Auckland, New Zealand.
[25] Torres-Giner, S., Gimenez, E., Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocoll, 22(4), 601–614.
[26] Ghorani, B., Russell, S. J., Goswami, P. (2013). Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs. Int J Polym Sci, 1-12.
[27] Pop, R. M., Buzoianu, A. D., Rati, I. V., Socaciu, C. (2014). Untargeted metabolomics for sea buckthorn (Hippophae Rhamnoides ssp. carpatica) berries and leaves: Fourier transform infrared spectroscopy as a rapid approach for evaluation and discrimination. Not Bot Hort Agrobot Cluj., 42(2), 545–550.
[28] Liu, D., Liu, Z., Wang, L., Zhang, C., Zhang, N. (2011). Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B., 85(2), 262–269.
[29] Van Ruth, S. M., Roozen, J. P. (2000). Influence of mastication and saliva on aroma release in a model mouth system. Food Chem., 71, 339–345.
[30] Zhang, R., Zhang, Z., Zou, L., Xiao, H., Zhang, G., Decker, E. A., McClements, D. J. (2016). Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. Food Funct, 7(1), 93–103.
[31] Salvia-Trujillo, L., McClements, D. J. (2016). Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chem., 210, 295–304.
[32] Miekus, M., Alminger, M., Alvito, P., Balance, S., Bohn, T., Bourlieu, C., Brodkorb, A. (2014). A standardisd static in vitro digstion method suitable for food - an international consensus. Food Func., 5(6), 1113-1124.
[33] Fish, W. W., Perkins-Veazie, P., Collins, J. K. (2002). A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents. J. Food Compos Anal., 15(3), 309–317.
[34] Miyoshi, T., Toyohara, K., & Minematsu, H. (2005). Preparation of ultrafine fibrous zein membranes via electrospinning. Polym Int., 54(8), 1187–1190.
[35] Ramakrishna, S. (2005). An Introduction to Electrospinning and Nanofibers,1st ed.,World Scientific,Singapore.
[36] Nezarati, R. M., Eifert, M. B., Cosgriff-Hernandez, E. (2013). Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Eng Part C Methods., 19(10), 810–819.
[37] Mit-uppatham, C., Nithitanakul, M., Supaphol, P. (2004). Ultratine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter . Macromol Chem Phys, 205(17), 2327–2338.
[38] Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys., 87(9), 4531–4547.
[39] De Nardo, T., Shiroma-Kian, C., Halim, Y., Francis, D., Rodriguez-Saona, L. E. (2009). Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J Agr Food Chem., 57(4), 1105–1112.
[40] Wilkerson, E. D., Anthon, G. E., Barrett, D. M., Sayajon, G. F. G., Santos, A. M., Rodriguez-saona, L. E. (2015). Rapid Assessment of Quality Parameters in Processing Tomatoes Using Hand-Held and Benchtop Infrared Spectrometers and Multivariate Analysis. J Agric Food Chem, 61(9), 2088–95.
[41] Heikkila, P., Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. Eur Polym J., 44,3067-3079.
[42] Pérez-Masiá, R., Lagaron, J. M., Lopez-Rubio, A. (2015). Morphology and Stability of Edible Lycopene-Containing Micro- and Nanocapsules Produced Through Electrospraying and Spray Drying. Foo Bioprocess Tech., 8(2), 459–470.
[43] Xiao, D., Davidson, P. M., Zhong, Q. (2011). Release and antilisterial properties of nisin from zein capsules spray-dried at different temperatures. LWT - Food Sci Tech., 44(10), 1977–1985.
[44] Molina, E., Papadopoulou, A., Ledward, D. A. (2001). Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocoll., 15(3), 263–269.
[45] Cui, C., Zhao, M., Yuan, B., Zhang, Y., Ren, J. (2013). Effect of pH and pepsin limited hydrolysis on the structure and functional properties of soybean protein hydrolysates. J Food Sci., 78(12), 1871–1877.
[46] Kong, X., Zhou, H., Qian, H. (2007). Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem., 102(3), 759–763.
[47] McClements, D. J., Xiao, H. (2014). Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct., 5(7), 1320–1333.
[48] Anese, M., Mirolo, G., Beraldo, P., Lippe, G. (2013). Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem., 136(2), 458–463.
[49] Zimmerman, M., Snow, B. (2012). An Introduction to Nutrition.1st ed., The Creative Commons,USA, pp 296-299.
[50] Singh, H., Ye, A., Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res., 48(2), 92–100.
[51] Krinsky, N I., Cornwell, D G. Oncley, J. L. (1958). The transport of vitamin A and carotenoids in human plasma. Arch Biochem Biophys., 73(1), 233–246.
[52] Parker, R. (1996). Absorption, metabolism, and transport of carotenoids. FASEB J., 10, 542–51.