[1] Komaiko, J., McClements, D.J., (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng. 146, 122-128.
[2] McClements, D.J., Rao, J., (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51(4), 285-330.
[3] Velikov, K.P., Pelan, E., (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter. 4(10), 1964-1980.
[4] Wooster, T.J., Golding, M., Sanguansri, P., (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 24(22), 12758-12765.
[5] Mason, T., Wilking, J., Meleson, K., Chang, C., Graves, S., (2006). Nanoemulsions: formation, structure, and physical properties. J. Phy. condens. matter. 18(41), 635–666.
[6] Komaiko, J., McClements, D.J., (2014). Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems. J. Colloid. Interface Sci. 425, 59-66.
[7] Jafari, S.M., He, Y., Bhandari, B., (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478-488.
[8] Tadros, T., Izquierdo, P., Esquena, J., Solans, C., (2004). Formation and stability of nano-emulsions. Advances in Colloid. Interface Sci. 108, 303-318.
[9] Abbas, S., Hayat, K., Karangwa, E., Bashari, M., Zhang, X., (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 5(3), 139-157.
[10] Roohinejad, S., et al., (2018). Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety. Wiley Online Library.
[11] Noroozi, M., Radiman, S., Zakaria, A., (2014). Influence of sonication on the stability and thermal properties of Al2O3 nanofluids. J. Nanomaterials. Article ID 612417, 2014, 10 pages.
[12] Solans, C., Solé, I., (2012). Nano-emulsions: formation by low-energy methods. Curr. Opin. Colloid. Interface. Sci. 17(5), 246-254.
[13] Moayedzadeh, S., Khosrowshahi asl, A., Gunasekaran, S., Madadlou, A., (2018). Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloid. 82, 11-18.
[14] Saberi, A.H., Fang, Y., McClements, D.J., (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 391, 95-102.
[15] Anton, N., Benoit, J.-P., Saulnier, P., (2008). Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Contr. Release. 128(3), 185-199.
[16] Najafi-Taher, R., Amani, A., (2017). Nanoemulsions: colloidal topical delivery systems for antiacne agents-A Mini-Review. Nanomedicine Res. J. 2(1), 49-56.
[17] Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., Fathollahi, I., (2016). Vitamin A palimitate-loaded nanoemulsions produced by spontaneous emulsification method: effect of surfactant and oil on droplet size and stability. J. Res. Innovat. Food Sci. Tech.. 4(4), 299-314.
[18] Jouki, M., et al., (2014). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biolo. Macro. 66, 113-124.
[19] Ghadermazi, R., Khosrowshahi-Asl, A., Tamjidi, F., (2019).Optimization of whey protein isolate-quince seed mucilage complex coacervation. Int. J. Biolo. Macro. 131, 368–377.
[20] Khalesi, H., Emadzadeh, B., Kadkhodaee, R., Fang, Y., (2016). Whey protein isolate-Persian gum interaction at neutral pH. Food Hydrocolloid. 59, 45-49.
[21] Ozturk, B., et al., (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 188, 256-263.
[22] Shamsara, O., et al., (2015). Effect of ultrasonication, pH and heating on stability of apricot gum–lactoglobuline two layer nanoemulsions. Int. J. Biolo. Macro. 81, 1019-1025.
[23] Kaltsa, O., et al., (2013). Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics sonochem. 20(3), 881-891.
[24] Abbastabar, B., Azizi, M.H., Adnani, A., Abbasi, S., (2015). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloid. 43, 259-264.
[25] Zhang, R., Zhang, Z., Kumosani, T., Khoja, S., Abualnaja, K.O., McClements, D.J., (2016). Encapsulation of β-carotene in nanoemulsion-based delivery systems formed by spontaneous emulsification: influence of lipid composition on stability and bioaccessibility. Food biophys. 11(2), 154-164.
[26] McClements, D.J., (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 7(6), 2297-2316.
[27] Anton, N., Vandamme, T.F., (2009). The universality of low-energy nano-emulsification. Int. J. Pharm. 377(1-2), 142-147.
[28] Prabhakar, K., Afzal, S.M., Surender, G., Kishan, V., (2013). Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta. Pharm. Sin. B. 3(5), 345-353.
[29] Dickinson, E., (2009). Hydrocolloid as emulsifiers and emulsion stabilizers. Food Hydrocolloid. 23(6), 1473-1482.
[30] Xu, D., Wang, X., Jiang, J., Yuan, F., Gao, Y., (2012). Impact of whey protein–Beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocolloid. 28(2), 258-266.
[31] Wang, Y., Li, D., Wang, L.-J., Adhikari, B., (2011). The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). J. Food Eng. 104(1), 56-62.
[32] Mohammadzadeh, H., Koocheki, A., Kadkhodaee, R., Razavi, S.M., (2013). Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Res. Int.. 53(1), 312-318.
[33] Alipour, A., Koocheki, A., Kadkhodaee, R., Varidi, M., (2015). The effect of alyssum homolocarpum seed gum-whey protein concentrate on stability of oil-in-water emulsion. Food Sci. Tech. 12(48), 163-174
[34] Anuchapreeda, S., Fukumori, Y., Okonogi, S., Ichikawa, H., (2012). Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. J. nanotechnology. Article ID 270383, 2012, 11 pages.
[35] Hassanzadeh, H., Alizadeh, M., Bari, M.R., (2018). Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnology. 12(5), 647-652.
[36] Maskan, M., Göǧüş, F., (2000). Effect of sugar on the rheological properties of sunflower oil–water emulsions. J. Food Eng. 43(3), 173-177.
[37] Khalloufi, S., Alexander, M., Goff, H.D., Corredig, M., (2008). Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Res. Int.. 41(10), 964-972.
[38] Khalloufi, S., Corredig, M., Goff, H.D., Alexander, M., (2009). Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocolloid. 23(3), 611-618.
[39] Akbari, E., Ghorbani, M., Sadeghi Mahonak, A., Alami, M., Kashaninejad, M., Nasrollahzadeh, A., (2016). Investigation of sage seed gum and whey- protein on the stability of the Oil-water emulsion with using response surface methodology (RSM). Innovat Food Sci. Emerg. Tech. 3(4), 47-56.
[40] Soleimanpoor, M., Kadkhodaee, R., Koocheki, A., Razavi, S., (2013). Effect of qodumeh shahri seed gum on physical properties of corn-oil in water emulsion prepared by high intensity ultrasound. Iranian Food Sci. Tech. Res. J. 9(1), 21-30.
[41] Kirtil, E., Oztop, M.H., (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Res. Int.. 85, 84-94.
[42] Dickinson, E., Stainsby, G., (1988). Advances in food emulsions and foams Edited by E. Dickinson and G. Stainsby, Elsevier Applied Science, London, 344-385.
[43] Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P.D., Koukiotis, C., Filotheou, A., Lousinian, S., Tzimpilis, E., (2014). Hydrocolloid from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloid. 42, 178-186.