Investigation of the effect of Propolis ethanolic extract on the physicochemical, microstructural, antioxidant and antimicrobial properties of starch-gelatin-polyvinyl alcohol blend film

Document Type : Research Article


1 MSc Student, Department of Food Science, College of Agriculture, Urmia University, Urmia, Iran

2 Professor, Department of Food Science, College of Agriculture, Urmia University, Urmia, Iran

3 Associate Professor, Department of Food Science, College of Agriculture, Urmia University, Urmia, Iran


In this study, biodegradable blend based on wheat starch, gelatin and polyvinyl alcohol was prepared and ethanolic extract of propolis (5, 10 and 20 %) (EPE) as antimicrobial and antioxidant agent was incorporated. The films were prepared by solvent casting method and their microstructural, mechanical, barrier, color, antioxidant and antimicrobial properties were investigated. In the control sample, homogenous structure was not formed due to the incompatibility of the biopolymers with each other, while the addition of EPE caused to formation of uniform structure and cracks were decreased according to SEM observations. FT-IR test approved the formation of new interactions between biopolymers and components of EPE. Addition of EPE caused to decrease the tensile strength, water vapor permeability and opacity. But the elongation to break and yellowness index increased. Total phenol content and antioxidant capacity of the films increased with increasing concentrations of EPE. Different concentrations of EPE significantly affected all properties of the film, exception water absorption. The films containing EPE had more antimicrobial effects on S.aureus compared to E.coli bacteria. Generally, the film containing EPE 10% demonstrated the best physicochemical and functional characteristics. Results of this research revealed that the blend film activated with propolis extract is a good candidate for antioxidant and antimicrobial packaging and increasing the shelf life of foods.

Graphical Abstract

Investigation of the effect of Propolis ethanolic extract on the physicochemical, microstructural, antioxidant and antimicrobial properties of starch-gelatin-polyvinyl alcohol blend film


  • Ethanolic propolis extract (EPE) was incorporated to starch/gelatin/polyvinyl alcohol blend film.
  • The miscibility of three biopolymers improved considerably by incorporation of EPE.
  • EPE decreased tensile strength and increased water barrier properties of blend film.
  • EPE loaded films exhibited good antimicrobial activity against both gram-positive and gram-negative bacteria. 
  • DPPH free radical scavenging activity of blend film increased after incorporation of EPE.


Main Subjects

[1] Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J.Food Sci., 68(2), 408-420.
[2] Chen, T.B., Chai, L.T. (2010). Attitude towards the environment and green products: Consumers’ perspective. Manag.Sci.Eng., 4(2), 27-39.
[3] De Abreu, D.P., Losada, P.P., Maroto, J., Cruz, J.M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innov.Food Sci.Emerg.Technol., 12(1), 50-55.
 [4] Bodini, R.B., Sobral, P.J.A., Favaro-Trindade, C.S., Carvalho, R.A. (2013). Properties of gelatin-based films with added ethanol–propolis extract. LWT-Food Sci. Technol., 51(1), 104-110.
 [5] Bertoft, E. (2004). Analyzing starch structure. In A. C. Eliasson (Ed.),Starch in Food. Structure, function and applications (pp. 57–96). New York: CRC Press.
 [6] Krochta, J.M., DeMulder-Johnson, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technol.,51(2), 61–74.
[7] Ropert, H. (1996). Starch: present use and future utilization. In H. Van Bekkun, H. Ropert, F. Voragen, & A. G. Voragen (Eds.), Carbohydrates as organic raw materials III (pp. 17–35). Weinheim, Germany: Wiley VCH.
[8] Barreto, P.L.M., Pires, A.T.N., Soldi, V. (2003). Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym. Deg. Stab., 79(1), 147-152.
[9] Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. Int. Food Res. J., 15(3), 237-248.
[10] Boanini, E., Rubini, K., Panzavolta, S., Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia6(2), 383-388.
[11] Baldwin, E.A., Hagenmaier, R., Bai, J. (Eds.). (2011). Edible coatings and films to improve food quality. CRC Press, UK, London, pp. 231-239.
[12] Pereda, M., Ponce, A.G., Marcovich, N.E., Ruseckaite, R.A., &Martucci, J.F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll., 25(5), 1372-1381.
[13] Srinivasa, P., Ramesh, M., Kumar, K., Tharanathan, R, (2003). Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydr. Polym., 53(4), 431-438 .
[14] Kanatt, S.R., Rao, M., Chawla, S., Sharma, A, (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll., 29(2), 290-297.
[15] Yang, S.Y.,Huang, C.Y. (2008). Plasma treatment for enhancing mechanical andthermal properties of biodegradable PVA/starch blends. J. Appl. Polym. Sci., 109(4), 2452–2459.
[16] Gupta, B., Agarwal, R., Sarwar Alam, M.S. (2013). Preparation and characterization of polyvinyl alcohol–polyethylene oxide–carboxymethyl cellulose blendmembranes. J. Appl. Polym. Sci., 127(2), 1301–1308.
[17] Silva, F.E.F., Batista, K.A., Di-Medeiros, M.C.B., Silva, C.N.S., Moreira, R.B., Fernandes, K.F. (2016). A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide. Mat. Sci. Eng., 58, 927–934.
[18] Shen, Z., Ghasemlu, M., Kamdem, D.P. (2015). Development and compatibility assessment of new composite film based on sugar beet pulp and polyvinyl alcohol intended for packaging applications. J. Appl. Polym. Sci.,132, 41354.
[19] Majdzadeh-Ardakani, K., Nazari, B. (2010). Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos. Sci. Technol.70(10), 1557-1563.
[20] Paralikar, S.A., Simonsen, J., Lombardi, J. (2008). Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J. Mem. Sci.320(1-2), 248-258.
[21] Mascheroni, E., Guillard, V., Nalin, F., Mora, L., & Piergiovanni, L. (2010). Diffusivity of propolis compounds in Polylactic acid polymer for the development of anti-microbial packaging films. J. Food Eng., 98(3), 294-301.
[22] Burdock, G.A. (1998). Review of the biological properties and toxicity of bee propolis. FoodChem.Toxicol., 36,347–363.
[23] Juliano, C., Pala, C.L., Cossu, M. (2007). Preparation and characterisation of polymeric films containing propolis. J. Drug Del. Sci. Technol., 17(3), 177-182.
[24] Mirzoeva, O.K., Grishanin, R.N. Calder, P.C. (1997). Antimicrobial action of propolis and some of its components: the effects ongrowth, membrane potential and motility of bacteria. Microbiol. Res., 152, 239–246.
[25] Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. (1999). Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacology, 64(3), 235-240.
[26] Koo, H., Gomes, B.P., Rosalen, P.L., Ambrosano, G.M., Park,Y.K. & Cury, J.A. (2000). In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch. OralBiol., 45, 141–148.
[27] Cabral, I.S.R., Oldoni, T.L.C., Prado, A. et al. (2009). Composicaofenolica, atividade antibacteriana e antioxidante da pr opolis ver- melha brasileira. Qu─▒mica Nova, 32, 1523–1527.
[28] Pastor, C., Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr. Polym.82(4), 1174-1183.
[29] de Araújo, G. K. P., de Souza, S. J., da Silva, M. V., Yamashita, F., Gonçalves, O. H., Leimann, F. V., & Shirai, M. A. (2015). Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int. J. Food Sci. Technol., 50(9), 2080-2087.
[30] Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. Int. J. Biol.Macromol., 98, 348-356.
[31] Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll., 36, 9-19.
[32] ASTM (1995a). Standard test method for tensile properties of thin plasticsheeting. Annual books of ASTM Standards.Designation 882-95, Philadelphia: ASTM, pp.182–188.
[33] ASTM(1995b).Standard test method for water vapor transmission of materials.Annual books of ASTM Standards.Designation E96-95, Philadelphia: ASTM, pp. 785–792.
[34] Angle, M. N., & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. Macromolecules, 33(22), 8344-8353.
[35] Siripatrawan, U., Harte, B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll., 24(8), 770-775.
[36] Bazargani-Gilani, B., Aliakbarlu, J., Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol., 29, 280-287.
[37] Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J.B., Ghanati, K., Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int.J. Biol. Macromol., 72, 606-613.
[38] López-Mata, M.A., Ruiz-Cruz, S., Silva-Beltrán, N.P., Ornelas-Paz, J.D.J., Zamudio-Flores, P.B., Burruel-Ibarra, S.E. (2013). Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18(11), 13735-13753.
[39] Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., Liou, N.S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8), 644.
[40] Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll., 36, 287-293.
[41] Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. Int. J. Biol. Macromol., 74, 289-296.
[42] Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll., 61, 695-702.
[43] Chang-Bravo, L., López-Córdoba, A., Martino, M. (2014). Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. Reac. Func. Polym., 85, 11-19.
[44] Shekarabi, A.S., Oromiehie, A.R., Vaziri, A., Ardjmand, M., Safekordi, A.A. (2014). Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Sci.Nut.2(6), 821-827.
[45] Pineros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll., 63, 488-495.
[46] Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in
foods - A review. Int. J. Food Microbiol, 94(3), 223–253.
[47] Devi, K.P., Nisha, S.A., Sakthivel, R., Pandian, S.K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J.Ethnopharmacology, 130(1), 107-115.
[48] Siripatrawan, U., Vitchayakitti, W., Sanguandeekul, R. (2013). Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol., 48(1), 22-27.
[49] Silici, S., Kutluca, S. (2005). Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacology, 99(1), 69-73.
[50] Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med., 20(7), 933-956.