Applying Electronic Nose System for Qualitative Classification of Iranian Black Tea

Document Type : Research Article


1 Associate Professor, Department of Agricultural Mechanization Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran

2 Assistant Professor, Department of Agricultural Mechanization Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran

3 PhD, Department of Biosystems Engineering, Shiraz University, Shiraz, Fars, Iran


Tea is one of the strategic products in north of Iran. The tea produced in tea factories have different qualities as it is affected by various factors such as weather conditions during growth, soil, harvest time, as well as processing and preparation methods. In addition to its appearance, other essential properties of tea are its chemical compounds and aromatic characteristics. Investigating new and accurate methods for tea quality assessment has a significant effect on the development of tea processing industries. In this research, an electronic nose system was used to extract the characteristics of tea aroma and applying of these features for qualitative classification of black tea. Extracted Features from a sensor array, including ten different metal oxide gas sensors (MOS) were used for classification of five qualitative categories of black tea by means of chemometric methods. Results showed that the best classification performance was obtained by Artificial Neural Network (ANN) with a total classification accuracy of 88.00%. Also, Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) resulted in accuracies of 78.00% and 86.67% respectively. Based on the results of Principle Components Analysis (PCA), it was found that MQ7 and MQ2 sensors had the highest effect on the separation of different classes of tea. Generally, the performance of electronic nose system was suitable for qualitative classification of Iranian black tea.

Graphical Abstract

Applying Electronic Nose System for Qualitative Classification of Iranian Black Tea


  • An electronic nose system was designed and constructed for quality classification of Iranian black tea.
  • The effect of different black tea classes of on the output signal of different metal-oxide-semiconductor (MOS) sensors.
  • Different chemometric methods were used and evaluated to classify different tea quality classes based on MOS sensor data.
  • The best classification accuracy of the system was 88% which achieved by artificial neural networks classifier.


Main Subjects

[1] FAOstat, (2016). URL: Accessed 2018.5.20.
[2] معاونت برنامه­ریزی و اقتصادی وزارت جهاد کشاورزی، (1396). گزارش وضعیت صنعت چای کشور، 20 ص.
[3] سالاری، ر. (1389). مقایسه­ ویژگی­های فیزیکوشیمیایی سه نوع چای عمده­ی وارداتی موجود در سطح شهر مشهد در طی سال 1388. مجله­ علمیپژوهشیعلوموفناوریغذایی، دوره 2، شماره 2، ص 65-72.
[2] Unachukwu, U.J., Ahmed, S., Kavalier, A., Lyles, J.T., Kennelly, E.J. (2010). White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. J. Food Sci., 75(6).
[3] Roy, R.B., Chattopadhyay, P., Tudu, B., Bhattacharyya, N., Bandyopadhyay, R. (2014). Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach. J. Food Eng., 142, 87-93.
[4] Liang, Y., Lu, J., Zhang, L., Wu, S., Wu, Y. (2005). Estimation of tea quality by infusion colour difference analysis. J. Sci. Food Agric., 85(2), 286-292.
[5] Yu, H., Wang, J., Yao, C., Zhang, H., Yu, Y. (2008). Quality grade identification of green tea using E-nose by CA and ANN. LWT Food Sci. Technol., 41(7), 1268-1273.
[6] موسسه استاندارد و تحقیقات صنعتی ایران، (1380). چای-  نام­های بازرگانی، شماره 5360.
[7] Alfatni, M.S., Shariff, A.R.M., Abdullah, M.Z., Saeed, O.M.B., Ceesay, O.M. (2011). Recent methods and techniques of external grading systems for agricultural crops quality inspection-review. Int. J. Food Eng., 7(3), 1-40.
[8] Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Meas., 82, 105-114.
[9] Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (Eds.). (2006). Handbook of machine olfaction: electronic nose technology. John Wiley & Sons, pp 592.
[10] Sanaeifar, A., Mohtasebi, S.S., Ghasemi-Varnamkhasti, M., Ahmadi, H., Lozano, J. (2014). Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech J. Food Sci. 32, 538–548.
[11] Torri, L., Sinelli, N., Limbo, S. (2010). Shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest Biol. Technol., 56(3), 239-245.
[12] Zhang, H., Wang, J., Ye, S., Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food Bioprocess Technol., 5(1), 65-72.
[13] Song, S., Yuan, L., Zhang, X., Hayat, K., Chen, H., Liu, F., Xiao, Z., Niu, Y. (2013). Rapid measuring and modelling flavour quality changes of oxidised chicken fat by electronic nose profiles through the partial least squares regression analysis. Food Chem., 141(4), 4278-4288.
[14] Wei, Z., Wang, J., Zhang, W. (2015). Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chem., 177, 89-96.
[15] Gancarz, M., Wawrzyniak, J., Gawrysiak-Witulska, M., Wiącek, D., Nawrocka, A., Tadla, M., Rusinek, R. (2017). Application of electronic nose with MOS sensors to prediction of rapeseed quality. Meas., 103, 227-234.
[16] Ezhilan, M., Nesakumar, N., Babu, K.J., Srinandan, C.S., Rayappan, J.B.B. (2018). An Electronic Nose for Royal Delicious Apple Quality Assessment–A Tri-layer Approach. Food Res. Int., 109, 44-51.
[17] Bhattacharyya, N., Seth, S., Tudu, B., Tamuly, P., Jana, A., Ghosh, D., Bandyopadhyay, R., Bhuyan, M. (2007). Monitoring of black tea fermentation process using electronic nose. J. Food Eng., 80(4), 1146-1156.
[18] Tripathy, A., Mohanty, A. K., Mohanty, M. N. (2012). Electronic nose for black tea quality evaluation using kernel based clustering approach. Int. J. Image Proc., 6, 86-93.
[19] Chen, Q., Liu, A., Zhao, J., Ouyang, Q. (2013). Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. Anal., 84, 77-83.
[20] Chen, Q., Zhao, J., Chen, Z., Lin, H., Zhao, D.A. (2011). Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sens. Actuators, B: Chem., 159(1), 294-300.
[21] Alocilja, E. C., Marquie, S. A., Meeusen, C., Younts, S. M., Grooms, D. L. (2004). U.S. Patent No. 6,767,732. Washington, DC: U.S. Patent and Trademark Office.
[22]Siebert, K.J. (2001). Chemometrics in brewing—A review. J. Am. Soc. Brew. Chem., 59(4), 147-156.
[23] Li, S., Li, X.R., Wang, G.L., Nie, L.X., Yang, Y.J., Wu, H.Z., Wei, F., Zhang, J., Tian, J.G., Lin, R.C. (2012). Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J. Pharm. Biomed. Anal., 70, 605-608.
[24] Qiu, S., Wang, J. (2017). The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem., 230, 208-214.
[25] Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., Toschi, T.G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem., 204, 263-273.
[26] Silva, L.O.L.A., Koga, M.L., Cugnasca, C.E., Costa, A.H.R. (2013). Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings. Comput. Electron. Agric., 97, 47-55.
[27] ثنایی­فر، ع.؛ محتسبی، س.س.؛ قاسمی ورنامخواستی، م.؛ احمدی، ح. (1394). طراحی، ساخت و ارزیابی عملکرد ماشین بویایی (بینی الکترونیکی) بر پایه حسگرهای نیمه‌هادی اکسید فلزی (MOS) به منظور پایش رسیدگی موز. نشریهماشین­هایکشاورزی، جلد 5، شماره 1، ص 111-121.
[28] Lelono, D., Triyana, K., Hartati, S., Istiyanto, J. E. (2016). Classification of Indonesia black teas based on quality by using electronic nose and principal component analysis. In AIP Conf. Proc. 1755, 1, 020003. AIP Publishing.
[29] Heidarbeigi, K., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop., 18(7), 1391-1401.
[30] شعبانی، پ.؛ قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ ریزی، س. (1397). سامانه ماشین بویایی، رهیافتی موثر برای تشخیص تقلب درگلاب. فصلنامه علمی-پژوهشی فناوری­های نوین غذایی، پذیرفته شده (شناسه دیچیتال: 10.22104/JIFT. 2018.2940.1712)
[31] صفری امیری، ز.؛ قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ محتسبی، س.س.؛ دولتی، م. (1397). استفاده از سامانه ماشین بویایی به‌منظور تشخیص تقلب در زیره کوهی. فصلنامه علمی-پژوهشی فناوری­های نوین غذایی، دوره 5، شماره 3، ص 527-541.
[32] ثنایی­فر، ع.؛ محتسبی، س.س.؛ قاسمی ورنامخواستی، م.؛ احمدی، ح. (1393). ارزیابی سامانه ماشین بویایی (بینی الکترونیکی) بر پایه حسگرهای نیمه‌هادی اکسید فلزی (MOS) در آشکارسازی تغییرات رداثر نگه‌داری موز. فصلنامه علمی-پژوهشی فناوری­های نوین غذایی، دوره 1، شماره 3، ص 29-38.
[33] Pardo, M., Sberveglieri, G. (2005). Classification of electronic nose data with support vector machines. Sensor. Actuat. B-Chem., 107(2), 730-737.
[34] حاجی­نژاد، م.؛ محتسبی، س.س.؛ قاسمی ورنامخواستی، م.؛ آغباشلو، م. (1395). طبقه­بندی عسل­های با منشأ گیاهی مختلف با استفاده از یک سامانه ماشین بویایی. مجله مهندسی بیوسیستم ایران، دوره 47، شماره 3، ص 415-423.
[35] Banerjee, M. B., Roy, R. B., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N. (2019). Black tea classification employing feature fusion of E-Nose and E-Tongue responses. J. Food Eng., 244, 55-63.