[1] FAOstat, (2016). URL: http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 2018.5.20.
[2] معاونت برنامهریزی و اقتصادی وزارت جهاد کشاورزی، (1396). گزارش وضعیت صنعت چای کشور، 20 ص.
[3] سالاری، ر. (1389). مقایسه ویژگیهای فیزیکوشیمیایی سه نوع چای عمدهی وارداتی موجود در سطح شهر مشهد در طی سال 1388. مجله علمیپژوهشیعلوموفناوریغذایی، دوره 2، شماره 2، ص 65-72.
[2] Unachukwu, U.J., Ahmed, S., Kavalier, A., Lyles, J.T., Kennelly, E.J. (2010). White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. J. Food Sci., 75(6).
[3] Roy, R.B., Chattopadhyay, P., Tudu, B., Bhattacharyya, N., Bandyopadhyay, R. (2014). Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach. J. Food Eng., 142, 87-93.
[4] Liang, Y., Lu, J., Zhang, L., Wu, S., Wu, Y. (2005). Estimation of tea quality by infusion colour difference analysis. J. Sci. Food Agric., 85(2), 286-292.
[5] Yu, H., Wang, J., Yao, C., Zhang, H., Yu, Y. (2008). Quality grade identification of green tea using E-nose by CA and ANN. LWT Food Sci. Technol., 41(7), 1268-1273.
[6] موسسه استاندارد و تحقیقات صنعتی ایران، (1380). چای- نامهای بازرگانی، شماره 5360.
[7] Alfatni, M.S., Shariff, A.R.M., Abdullah, M.Z., Saeed, O.M.B., Ceesay, O.M. (2011). Recent methods and techniques of external grading systems for agricultural crops quality inspection-review. Int. J. Food Eng., 7(3), 1-40.
[8] Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Meas., 82, 105-114.
[9] Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (Eds.). (2006). Handbook of machine olfaction: electronic nose technology. John Wiley & Sons, pp 592.
[10] Sanaeifar, A., Mohtasebi, S.S., Ghasemi-Varnamkhasti, M., Ahmadi, H., Lozano, J. (2014). Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech J. Food Sci. 32, 538–548.
[11] Torri, L., Sinelli, N., Limbo, S. (2010). Shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest Biol. Technol., 56(3), 239-245.
[12] Zhang, H., Wang, J., Ye, S., Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food Bioprocess Technol., 5(1), 65-72.
[13] Song, S., Yuan, L., Zhang, X., Hayat, K., Chen, H., Liu, F., Xiao, Z., Niu, Y. (2013). Rapid measuring and modelling flavour quality changes of oxidised chicken fat by electronic nose profiles through the partial least squares regression analysis. Food Chem., 141(4), 4278-4288.
[14] Wei, Z., Wang, J., Zhang, W. (2015). Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chem., 177, 89-96.
[15] Gancarz, M., Wawrzyniak, J., Gawrysiak-Witulska, M., Wiącek, D., Nawrocka, A., Tadla, M., Rusinek, R. (2017). Application of electronic nose with MOS sensors to prediction of rapeseed quality. Meas., 103, 227-234.
[16] Ezhilan, M., Nesakumar, N., Babu, K.J., Srinandan, C.S., Rayappan, J.B.B. (2018). An Electronic Nose for Royal Delicious Apple Quality Assessment–A Tri-layer Approach. Food Res. Int., 109, 44-51.
[17] Bhattacharyya, N., Seth, S., Tudu, B., Tamuly, P., Jana, A., Ghosh, D., Bandyopadhyay, R., Bhuyan, M. (2007). Monitoring of black tea fermentation process using electronic nose. J. Food Eng., 80(4), 1146-1156.
[18] Tripathy, A., Mohanty, A. K., Mohanty, M. N. (2012). Electronic nose for black tea quality evaluation using kernel based clustering approach. Int. J. Image Proc., 6, 86-93.
[19] Chen, Q., Liu, A., Zhao, J., Ouyang, Q. (2013). Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. Anal., 84, 77-83.
[20] Chen, Q., Zhao, J., Chen, Z., Lin, H., Zhao, D.A. (2011). Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sens. Actuators, B: Chem., 159(1), 294-300.
[21] Alocilja, E. C., Marquie, S. A., Meeusen, C., Younts, S. M., Grooms, D. L. (2004). U.S. Patent No. 6,767,732. Washington, DC: U.S. Patent and Trademark Office.
[22]Siebert, K.J. (2001). Chemometrics in brewing—A review. J. Am. Soc. Brew. Chem., 59(4), 147-156.
[23] Li, S., Li, X.R., Wang, G.L., Nie, L.X., Yang, Y.J., Wu, H.Z., Wei, F., Zhang, J., Tian, J.G., Lin, R.C. (2012). Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J. Pharm. Biomed. Anal., 70, 605-608.
[24] Qiu, S., Wang, J. (2017). The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem., 230, 208-214.
[25] Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., Toschi, T.G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem., 204, 263-273.
[26] Silva, L.O.L.A., Koga, M.L., Cugnasca, C.E., Costa, A.H.R. (2013). Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings. Comput. Electron. Agric., 97, 47-55.
[28] Lelono, D., Triyana, K., Hartati, S., Istiyanto, J. E. (2016). Classification of Indonesia black teas based on quality by using electronic nose and principal component analysis. In AIP Conf. Proc. 1755, 1, 020003. AIP Publishing.
[29] Heidarbeigi, K., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop., 18(7), 1391-1401.
[30] شعبانی، پ.؛
قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ ریزی، س. (1397). سامانه ماشین بویایی، رهیافتی موثر برای تشخیص تقلب درگلاب.
فصلنامه علمی-پژوهشی فناوریهای نوین غذایی، پذیرفته شده (شناسه دیچیتال: 10.22104/JIFT. 2018.2940.1712)
[31] صفری امیری، ز.؛
قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ محتسبی، س.س.؛ دولتی، م. (1397). استفاده از سامانه ماشین بویایی بهمنظور تشخیص تقلب در زیره کوهی.
فصلنامه علمی-پژوهشی فناوریهای نوین غذایی، دوره 5، شماره 3، ص 527-541.
[32]
ثناییفر، ع.؛ محتسبی، س.س.؛
قاسمی ورنامخواستی، م.؛ احمدی، ح. (1393). ارزیابی سامانه ماشین بویایی (بینی الکترونیکی) بر پایه حسگرهای نیمههادی اکسید فلزی (MOS) در آشکارسازی تغییرات رداثر نگهداری موز.
فصلنامه علمی-پژوهشی فناوریهای نوین غذایی، دوره 1، شماره 3، ص 29-38.
[33] Pardo, M., Sberveglieri, G. (2005). Classification of electronic nose data with support vector machines. Sensor. Actuat. B-Chem., 107(2), 730-737.
[34] حاجینژاد، م.؛ محتسبی، س.س.؛ قاسمی ورنامخواستی، م.؛ آغباشلو، م. (1395). طبقهبندی عسلهای با منشأ گیاهی مختلف با استفاده از یک سامانه ماشین بویایی. مجله مهندسی بیوسیستم ایران، دوره 47، شماره 3، ص 415-423.
[35] Banerjee, M. B., Roy, R. B., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N. (2019). Black tea classification employing feature fusion of E-Nose and E-Tongue responses. J. Food Eng., 244, 55-63.