[1] Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C. (2014a). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review. Food Res. Int. 62, 326–343.
[2] Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., Holmes, M. (2010). In-line detection of apple defects using three color cameras system. Comput. Electron. Agric. 70, 129–134.
[3] Pathare, P.B., Opara, U.L., Al-Said, F.A.-J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol. 6, 36–60.
[4] Qin, J., Burks, T.F., Zhao, X., Niphadkar, N., Ritenour, M.A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. J. Food Eng. 108, 87–93.
[5] Patel, K.K., Kar, A., Jha, S., Khan, M. (2012). Machine vision system: a tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 49, 123–141.
[6] Zhang, B.H., Huang, W.Q., Li, J.B., Zhao, C.J., Liu, C.L., Huang, D.F. (2013). Detection of bruises and early decay in apples using hyperspectral imaging and PCA. Infrared Laser Eng. 42, 5.
[7] نداف زاده، مریم. آبدانان مهدی زاده، سامان. (1395) تعیین زمان بهینه پخت سبزیجات با کمک پردازش تصاویر دیجیتالی و اندازه گیری مختصات رنگی. فناوریهای نوین غذایی، جلد 3، شماره 11، ص 49-57.
[8] حسینی، سید مهدی. جعفری، عبدالعباس. حمزه زرقانی، حبیب الله. تاتار، احسان. (1392) تشخیص بیماری لکه موجی در گوجهفرنگی با استفاده از ماشین بینایی جهت اعمال سمپاشی نقطهای. هشتمین کنگره ملی مهندسی ماشینهای کشاورزی (بیوسیستم) و مکانیزاسیون دانشگاه فردوسی مشهد. ص 981-970.
[9] Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J., Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol. 4, 487–504.
[10] Kleynen, O., Leemans, V., Destain, M.-F. (2005). Development of a multi-spectral vision system for the detection of defects on apples. J. Food Eng. 69, 41–49.
[11] اورک, هادی, آبدانان مهدی زاده, سامان. (1396) تشخیص و جداسازی گره و میانگره در ساقههای نیشکر به صورت برخط با کمک بینایی ماشین. مهندسی بیوسیستم ایران، جلد 48، شماره 2، ص 263-272.
[12] Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M.-F., Debeir, O. (2011). Automatic grading of bi-colored apples by multispectral machine vision. Comput. Electron. Agric. 75, 204–212.
[13] Li, J., Rao, X., Wang, F., Wu, W., Ying, Y. (2013). Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biol. Technol. 82, 59–69.
[14] Bennedsen, B., Peterson, D. (2005). Performance of a system for apple surface defect identification in near-infrared images. Biosyst. Eng. 90, 419–431.
[15] Gomez-Sanchis, J., Molto, E., Camps-Valls, G., Gomez-Chova, L., Aleixos, N., Blasco, J. (2008). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. J. Food Eng. 85, 191–200.
[16] Huang, W., Li, J., Zhang, C., Li, B., Chen, L., Zhang, B. (2012). Detection of surface defects on fruits using spherical intensity transformation. Nongye Jixie Xuebao (Trans. Chinese Soc. Agric. Mach.) 43, 187–191.
[17] Aleixos, N., Blasco, J., Navarron, F., Molto, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Comput. Electron. Agric. 33, 121–137.
[18] Papadakis, K.S.E., Abdul-Malek, S., Kamdem, R.E., Yam, K.L. (2000). A versatile and inexpensive technique for measuring color of foods. Food Technol. 54, 48–51.
[19] Blasco, J., Molto, E. (2002). Identification of defects in citrus using multispectral imaging. In: International Conference on Agricultural Engineering. AgEng 02, Budapest, Hungary: EurAgEng Paper No. 02-AE-031.
[20] آبدانان مهدیزاده، سامان. سلطانی کاظمی، مریم. (1396) ساخت، توسعه و ارزیابی سامانه جداکننده توت فرنگی با استفاده از تکنولوژی بینایی ماشین. پژوهشهای مکانیک ماشینهای کشاورزی، جلد 6، شماره 1، ص31-44.
[21] Robnik-Sikonja, M., Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning. 53, 23-69.
[22] Zheng, Y., Zhu, Q., Huang, M., Guo, Y., Qin, J. (2015). Maize and weed classification using color indices with support vector data description in outdoor fields. Computers and Electronics in Agriculture, 141, 215-222.
[23] Aghnabati, A. (2004). Geology of Iran. Geological Survey of Iran, Tehran. 586.
[24] Adankon, M.M., Cheriet, M. (2009). Model selection for the LS-SVM application to handwriting recognition. Pattern Recognition. 42, 3264–3270.
[25] Karimi, Y., Prasher, S. O., Patel, R. M., Kim, S. H. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture. 51, 99–109.
[26] آبدانان مهدیزاده، سامان. (1395) تشخیص ترک در پوسته تخم مرغ با استفاده از PCA و SVM. مجله علوم و صنایع غذایی، جلد 56، شماره 13، ص 143-153.
[27] Lin, Y. L., Wei, G. (2005). Speech emotion recognition based on HMM and SVM. In Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on (Vol. 8, pp. 4898-4901). IEEE.
[28] Demir, B., Erturk, S. (2007). Hyperspectral image classification using relevance vector machines. IEEE Geoscience and Remote Sensing Letters, 4, 586-590.