Determination of optimum conditions for spray-drying of peach juice-skim milk blend using response surface method

Document Type : Research Article

Authors

1 MSc Graduated from Department of Food Science & Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Food Science & Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Abstract

The objective of present study was to determine the optimum conditions for spray drying of peach juice-skim milk blend. The experiments were designed according to a 3-level-3-factor Box-Behnken design (BBD) using response surface methodology (RSM). The effects of fruit juice to skim milk powder as drying aid (40:60-60:40 %), inlet air temperature (110- 130 ◦C) and compressed air flow rate (300- 700 L/h) on drying yield, physical properties (water activity, moisture content, bulk density, solubility, hygroscopicity and wet ability  time) and antioxidant activity of the resultant powder were investigated. The results indicated that increasing the inlet air temperature significantly caused an increase in drying yield, bulk density, solubility, hygroscopicity and wet ability  time and a decrease in water activity and moisture content of peach powder ( ). Ratio of fruit juice to skim milk powder had the same effects on drying yield and the examined physical properties as inlet air temperature; however, its effects on  moisture content and hygroscopicity were not statistically significant ( ). The compressed air flow rate showed no significant effects on drying yield and physical properties ( ) but it significantly deceased the antioxidant activity of the peach powder ( ). Similarly, the inlet air temperature resulted in decreased antioxidant activity; however, ratio of fruit juice to skim milk powder affected the bioactivity of the powder significantly positively. RSM described that upon optimum drying conditions of 60:40 % ratio of fruit juice to skim milk powder, 126 ◦C inlet air temperature and 404 L/h compressed air flow rate, it is possible to produce peach powder with drying yield of 65.8%, water activity of 0.27, moisture content of 3.38%, bulk density of 6.54 g/cm3, solubility of 85.65%, hygroscopicity of 0.035 g water/g powder, wet ability time of 7.2 s and antioxidant activity of 35.31%.

Graphical Abstract

Determination of optimum conditions for spray-drying of peach juice-skim milk blend using response surface method

Highlights

  • Response surface method can be introduced as an effective method for optimizing the spray-drying conditions of peach juice.
  • Skim milk powder is considered as a desirable drying aid for the spray-drying peach juice.
  • Increasing ratio of fruit juice to skim milk powder and inlet air temperature has an important effect on peach powder characteristics.

Keywords

Main Subjects


[1] اجنوردی، س.؛ جوانمرد، م.؛ اسداللهی، ا. (1391) بررسی اثر پوشش خوراکی بر پایه آب پنیر حاوی عصاره آویشن شیرازی بر ماندگاری میوه هلو (رقم انجیری). نشریه پژوهش­های علوم و صنایع غذایی ایران، شماره 8، دوره 3، ص 337-348.
[2] Faust, M., Timon, B. L. (2010). "Origin and Dissemination of Peach". Hortic. Rev., p. 331.
[3] Kingsly, R. P., Goyal, R. K., Manikantan, M. R., Ilyas, S. M. (2007). Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int. J. Food Sci. Technol., 42, 65–69.
[4] Patil, V., Chauhan, A.K., Singh, S.P. (2014). Influence of spray drying technology on the physical and nutritional properties of guava powder. Int. J. Curr Microbiol. Appl. Sci., 3, 1224-1237.
[5] Tonon, R.V., Brabet, C., Hubinger, M.D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng., 88, 411-418.
[6] Jaishankar, H.P. (2016). Spry drying- a new emerging technology in post harvest: an overview. Adv. Life Sci., 5, 5438-5442.
[7] Kha, T.C., Nguyen, M.H., Roach, P.D. (2010). Effect of spray drying conditions on the physicochemical and antioxidant properties of Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng., 98, 385–392.
[8] Fazaeli, M., Emam-Djomeh, Z., Kalbasi., Ashtari, A., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process., 90, 667-675.
[9] Shrestha, A. K., Ua-arak, T., Adhikari, B. R., Howes, T., Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop., 10, 661–673.
[10] Goudarzi, M., Madadlou, A., Mousavi, M. E., Emam-Djomeh, Z. (2015). Formulation of apple juice beverages containing whey protein isolate or whey protein hydrolysate based on sensory and physicochemical analysis. Int. J. Dairy Technol., 68, 70–78.
[11] شهیدی، ف.؛ وریدی، م.؛ محبی، م.؛ نوشاد، م.؛ خلیلیان موحد، م. (1393) بهینه­سازی شرایط خشک­کردن پاششی آب انار با استفاده از روش سطح پاسخ. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، شماره 3، دوره 2، ص 129-142.
[12] Goudarzi, M., Madadlou, A., Mousavi, M. E., Emam-Djomeh, Z. (2012). Optimized preparation of ACE-inhibitory and antioxidarive whey protein hydrolysate using response surface method (RSM). Dairy Sci. Technol., 92, 641–653.
]13[ احمدی­راد، م.؛ امام­جمعه، ز.؛ اسدی، ح. (1395) بهینه­سازی فرایند خشک­کردن پاششی آب زغل اخته با استفاده از روش سطح پاسخ. فصلنامه علوم و صنایع غذایی، شماره 50، دوره 13، ص 67-78.
[14] AOAC International. (1990). Official Methods of Analysis of AOAC. AOAC International, Gaithersberg, MD.
[15] Vissotto, F.Z., Jorge, L.C., Makita, G.T., Rodrigues, M.I., Menegalli, F.C. (2010). Influence of the process parameters and sugar granulometry on cocoa beverage powder steam agglomeration. J. Food Eng., 97, 283–291.
[16] Kurozawa, L. E., Park, K. J., Hubinger, M. D. (2009). Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J. Food Eng., 91, 287-296.
 [17] Yousefi, S., Emam-Djomeh, Z., Mousavi, S. M. A., Askari, G. (2012). Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate. Food Bioprocess Technol., 5, 1328–1339.
[18] Goula, A.M., Adamopoulos, K.G. (2005). Spray drying of tomato pulp in dehumidified air: 1. the effect on product recovery. J. Food Eng., 66, 25-34.
[19] Quek, S.Y., Chok, N.K., Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powder. Chem. Eng. Process., 46, 386–392.
[20] Papadakis, S.E., Gardeli, C., Tzia, C. (2006). Spray drying of raisin juice concentrate. Drying Technol., 24, 173-180.
[21] Goula, A.M., Adamopoulos, K.G., (2005). Spray drying of tomato pulp in dehumidified air: 2. The effect on powder properties. J. Food Eng., 66, 35–42.
[22] Chegini, G.R., Ghobadian, B. (2005). Effect of spray-drying condition on physical properties of orange juice powder. Drying Technol., 23, 657–668.
[23] Rodriguez-Hernandez, G.R., Gonzalez-Garcia, R., Grajales-Lagunes, A., Ruiz-Cabrera, M.A., Abud-Archila, M. (2005). Spray-drying of cactus pear juice (Opuntia streptacantha): effect on the physicochemical properties of powder and reconstituted product. Drying Technol., 23, 955–973.
 [24] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J. Food Eng., 80, 805–812.
[25] Horuz, E., Altan, A., Maskan, M. (2012). Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technol., 30, 787-798.