Modeling of hot vapor flow in cylinder of drum dryer by using finite element method for drying of Aloe vera gel.

Document Type : Research Article

Authors

1 PhD student of Biosystems engineering, College of Aburaihan, University of Tehran

2 Associate Professor, College of Aburaihan, University of Tehran

Abstract

Aloe vera plant (Aloe vera) from Liliaceae family is one of the high valuable medicinal plants. One of the usage the gel of the crop is to use the dried powder. In this research, drum dryer was used to dry the product. Finite element method was used to examine the heat transfer in the cylinder of a drum dryer. Four cylindrical models were used to study the uniformity and maximum heat transfer of steam flow to the dryer cylinder wall. Two parameters were considered for controlling the flow of hot steam inside the cylinder, i.e. the conical barrier at input and the output (narrow and wide). The A and B models are narrow and broad output respectively, both without conical barrier and the C and D models, are similar to the A and B models but including conical barrier. The effect of two mass flow rates of intake water vapor (1 and 2 kg/s) was also investigated on the models. The results were important in terms of uniformity and maximum heat transfer on the cylinder surface. The results showed that the installation of a conical barrier in the drum dryer causes to direct the hot steam to the drum walls immediately and causes to have the highest heat transfer, so that the temperature increase above 485 K. The barrier caused to move the steam near the drum wall from the beginning to the end. Meanwhile the temperature was cooled uniformly about 10 K. The lowest variation of temperature (6 K) on the cylinder wall was for the model B and mass flow rate of 1 kg/s, which the highest temperature (476 K) was at the middle of the cylinder, and the lowest temperature (470 K) was at the beginning as well as at the end of the cylinder.

Graphical Abstract

Modeling of hot vapor flow in cylinder of drum dryer by using finite element method for drying of Aloe vera gel.

Highlights

  • The steam flow in drum dryer was modeled using finite element method.
  • The heat transfer was evaluated in four cylindrical models for drum dryer.
  • The best velocity of water vapor flow are given in four cylindrical models for drum dryer
  • The optimum conditions are proposed for two flows of hot water vapor of 1 and 2 kg/s in four cylindrical models.

Keywords

Main Subjects


[1] Tom, R. (2004). Aloes the genus Aloe. Medicinal and aromatic Plants-Industrial profiles; CRC Press. V.35.
[2] Mirza, M., Kamal, U., Khalequzzaman, K.M., Kamrun, N. (2008). Plant characteristics, growth and leaf yield of Aloe vera as affected by organic manure in pot culture. Australian J. Crop Sci., 2(3),158-163.
[3] Antonio, V., Elsa, U., Roberto, L., Margarita, M. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT-Food Sci. Technol., 40, 1698–1707.
[4] Rodriguez, R., Jasso de Rodriguez, D., Gil Marin, G.A., Angulo, J.L., Lira Saldivar, R.H. (2006). Growth, stomata resistance, and transpiration of Aloe vera under different soil water potentials. Industrial Crops Products., 25, 123 – 128.
[5] یزدانی، د.؛ رضایی، م.؛ کیانبخت، س.؛ خسروانی، س. (1385) مروری بر جنبه های مختلف گیاه دارویی صبرزرد. فصلنامه گیاهان دارویی، سال پنجم.  شماره 19.
[6] خلج، م. (1387) معرفی و توسعه گیاه صبرزرد (Aloe vera) در مناطق خشک ایران. صنایع غذایی و تغذیه­ای، شماره 173، ص 18 -19.
[7] کریمی­آکندی، س.ر. (1390) طراحی، ساخت و ارزیابی دستگاه استحصال ژل برگ صبرزرد  (Aloe vera). پایان نامه کارشناسی ارشد مهندسی مکانیک ماشین­های کشاورزی. دانشگاه تربیت مدرس، دانشکده کشاورزی.
[8] Boudreau, M.D., Beland, F.A. (2006). An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. J. Environ. Sci. Health. C., 24(1), 103-54.
[9] Simal, S., Femenia, A., Llull, P., Rossello, C., (2000). Dehydration of Aloe Vera: simulation of drying curves and evaluation of functional properties. J. Food Eng., 43, 109–114.
 [10] Kwok, B.H.L., Hu, C., Durance, T., Kitts, D.D. (2004). Dehydration techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt). J. Food Sci., 69, 122–125.
[11] Zielinskaa, M., Markowski, M. (2010). Air drying characteristics and moisture diffusivity of carrots. Chem. Eng. Process., 49, 212–218.
[12] Chang, C., Lin, H., Chang, C., Liu, Y. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng., 77, 478–485.
[13] Vega-Galvez, A., Di Scala, K., Rodriguez, K., Lemus-Mondaca, R., Miranda, M., Lopez, J., Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem., 117, 647–653.
[14] ذاکری، س. (1390) خشک­کردن ژل صبرزرد با خشک­کن پاششی و هوای گرم. پایان نامه کارشناسی ارشد مهندسی مکانیک ماشین­های کشاورزی. دانشگاه تربیت مدرس، دانشکده کشاورزی.
[15] Chegini G.R., Ghobadian B. (2007). Spray Dryer Parameters for Fruit Juice Drying. World J. Agri. Sci., 3 (2), 230-236.
[16] Supprung, P., Noomhorm, A. (2003). Optimization of drum drying for low amylase rice (KDML105) starch and flour. Drying Technol., 21(9), 1781-1795.
[17] Pua, C.K., Hamid, N., Tan, C.P., Mirhosseini, H., Rahman, R.B., Rusul, G. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT – Food Sci. Technol., 43, 343–349.
[18] Pua, C.K., Hamid, N.S.A., Rusul, G., Rahman, R.A. (2007). Production of drum-dried jackfruit (Artocarpus heterophyllus) powder with different concentration of soy lecithin and gum arabic. J. Food Eng., 78, 630–636.
[19] Kakade, R., Shaukat Ali, H.D. (2011). Performance evaluation of a double drum dryer for potato flake production. J. Food Sci. Technol., 48(4), 432–439.
[20] Tang, J., Feng, H., Shen, G.Q. (2003). Drum drying. Encyclopedia of agricultural food and biological engineering. CRC press. 532 pages.
[21] Ramli, W., and Daud, W. (2006). 9 Drum dryers. Handbook of industrial drying. 835 pages.
[22] Orsat, V., and Raghavan, G.V. (2007). Dehydration technologies to retain bioactive component. Functional food ingredients and nutrauceticals. Process. Technol., 173-191.
[23] Vega-Mercado, H., Marcela Gongora-Nieto, M., Barbosa-Canovas, G.V. (2001). Advances in dehydration of food. J. Food Eng., 49(4), 271-289.
 [24]حمیدی سپهر، ع. (1393) طراحی و ساخت خشک­کن پاششی صفحه داغ. پایان­نامه کارشناسی ارشد مهندسی مکانیک بیوسیستم، دانشگاه تهران، دانشکده کشاورزی.
 [25]حسن­زاده، ی.؛ حکیم­زاده، ح.؛ عیاری، ش. (1390) بررسی اثر اشکال مختلف پایه پل بر الگوی جریان اطراف آن با استفاده از نرم­افزار Fluent. تحقیقات منابع آب ایران، 7(4)، صفحه 95-105.
[26] Henriquez, C., Cordova, A., Sergio Almonacid, S., Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. J. Food Eng., 143, 146–153.
[27] Romero, V.M., Cerezo, E., Garcia, M.I., Sanchez, M.H. (2014). Simulation and validation of vanilla drying process in anindirect solar dryer prototype using CFD Fluent program. Energy Procedia., 57, 1651 – 1658
[28] Anonymous. (2000). ANSYS User’s Manual. Swanson Analysis Sys. Inc.
[29] M. Kostoglou, M., KarapantsiosT.D. (2003). On the thermal inertia of the wall of a drum dryer under a cyclic steady state operation. J.  Food Eng., 60, 453–462.
[30] Akin, J.E., (2005). Finite Element Analysis with Error Estimators. Elsevier, UK. Oxford. 440 P.