[1] Gonnet, M., Lethuaut, L. and Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. J. Control. Release, 146, 276-290.
[2]
Akram Pezeshky, A.,
Ghanbarzadeh, B., Hamishehkar, H.,
Moghadam, M. and
Mohammadi, M. (2014). Vitamin A Palimitae Bearing Nano-structured Lipid Carrier (NLC): Factors affecting particle Size, encapsulation efficiency and stability. Innova. Food. Technol. 2(1), 67-82.
[3] Tamjidi, F., Shahedi, M., Varshosaz, J. and Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 19, 29-43.
[4] Das, S., Ng, W.K. and Tan, R.B.H. 2012. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci., 47(1), 139-151.
[5] Pezeshky Najafabadi, A. and mohammadi, M. (2017). Nano lipid carrier as target delivery systems for enrichment beverages by bioactive compounds. Innova. in Food Sci. and Technol., 9(Ghochan issue), 9-27.
[6] Yang, Y., Corona III A., Schubert, B., Reeder, R. and Henson, M.A. (2014). The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci., 418, 261–272.
[7] Weiss, J., Decker, E.A., McClements, D.J., Kristbergsson, K., Helgason, T., and Awad, T. (2008). Solid lipid nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys., 3, 146–154.
[8] Fathi, M., Mozafari M.R. and Mohebbi M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol., 1-15.
[9] Mohammadi, M., Pezeshki, A., Mesgari, M., Ghanbarzadeh, B., Hamishehkar ,H. (2017).Vitamin D3-Loaded Nanostructured Lipid Carriers as a Potential Approach for Fortifying Food Beverages; in Vitro and in Vivo Evaluation. Adv. Pharm. Bullet., 7(1),61-71.
[10] Lacatusu, I., Badea, N., Ovidiu, O., Bojin, D. and Meghea, A. (2012). Highly antioxidant carotene-lipid nanocarriers: synthesis and antibacterial activity. J. Nanopart. Res., 14,902-918.
[11] Fathi, M. and Varshosaz, J. (2013). Novel hesperetin loaded nanocarriers for food fortification: Production and characterization. J. Funct. Foods, 5, 1382-1391.
[12] Liu, C.H. and Wu, C.T. (2010). Optimization of nanostructured lipid carriers for lutein delivery. Colloids and Surfaces A: Physicochem. Eng. Aspects, 353, 149–156.
[13] Sun, M., Nie, S., Pan, X., Zhang, R., Fan, Z. and Wang, S. (2014). Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloid Surf. B., 113, 15– 24.
[14] Pezeshki, A., Ghanbarzadeh, B., Mohammadi, M., Fathollahi, I., Hamishehkar ,H. (2014). Encapsulation of Vitamin A Palmitate in Nanostructured Lipid Carrier (NLC)-Effect of Surfactant Concentration on the Formulation Properties. Adv. Pharm. Bullet., 4(Supp2), 563-568.
[15] Farid Aghaie, S., GHanbarzadeh, B. and Hamishehkar, H. (2016). Conjugated linoleic acid loaded nanostructured lipid carriers (NLC): optimization of particle size by response surface methodology. J. Food Res., 25(3),441-456.
[16] MacDonald, H. ( 2003). Conjugated Linoleic acid and its association with Disease Prevention. Journal of the American College of Nutrition. 19(2): 111-117.
[17] Xia, S., and Xu, S. (2005). Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Research. Int., 38: 289-296.
[18]. Fatouros, D.G. and Antimisiaris, S.G. (2002). Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin. colloid inter. sci. 251(2), 271-277.
[19] Klang, V., et al. (2012). Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 43(2), p. 85-103.
[20] Müller, R.H., Radtke, M. and Wissing, S.A. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 242, 121-128.
[21] Dai, Q., Zhu, X., Abbas, S., Karangwa, E., Zhang, X., Xia, S., (2015). Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. J. Agri. Food Chem., 63(16), 4179-4189.
[22] Kovacevic, A.B., Muller, R.H., Savic, S.D., Vuleta, G.M. and Keck, C.M. (2014). Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids Surf. A, 444, 15– 25.
[23] Qian, CH., Decker, E.A., Xiao, H. and McClements, D.J. (2013). Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int., 52, 342-349.
[24] Lim, S.J. and Kim, C.K. (2002). Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 243(1-2), 135-146.
[25] Saberi, A.H., Fang, Y. and McClements, D.J. (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J. colloid inter. sci. 391, 95-102.