Production of Aromatic Cellulose acetate Nanofibers containing Vanilla using Electrospinning Technique

Document Type : Research Article

Authors

1 Assistant Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

2 Ph.D. student of Food Engineering, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

In this study, the nanofibers containing vanillin are introduced as the aromatic mats for food packaging. The cellulose acetate solutions were prepared at 10, 12, and 14% and the nanofibers were produced by means of the electrospinning method. Evaluation of the scanning electronic microscopic (SEM) images and the nanofibers diameter revealed that the 12% cellulose acetate is the optimized level of biopolymer concentration in the process. In the next step, 1% w/w vanillin was incorporated into the nanofibers and the aromatic acetate cellulose electrospuns were produced. The Fourier transform infrared spectroscopy (FTIR), and the vanillin leaching measurements were performed on the aromatic vanillin electrospuns. The results revealed that the vanillin has been entrapted into the nanofibers and its encapsulation efficiency was 85%. Moreover, the influence of the nanofiber diameter on the vanillin release kinetic using the pseudo- second order showed that increasing the nanofiber diameter dramatically decreases the vanillin release.

Graphical Abstract

Production of Aromatic Cellulose acetate Nanofibers containing Vanilla using Electrospinning Technique

Highlights

  • The optimal electrospinning conditions for the encapsulation of vanillin in cellulose acetate nanofibers were determined.
  • Loading of vanillin did not influence the nanofibers diameter.
  • The chemical and sensory evaluations approved the entrapment of vanillin in the nanofibers.
  • The kinetic release of the vanillin as a function of nanofiber diameter was studied.

Keywords

Main Subjects


[1] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011).An overview of encapsulation technologies for food applications. In: Proceeding of the 9 th Int. Conf. on Predictive Modelling in Food. (pp. 1806-15), Rio de Janeiro, Brazil.
[2] Lakkis, J.M. (2007). Encapsulation and Controlled Release Technologies in Food Systems, 2nd ed., Wiley-Blackwell, Chichester, UK, pp. 1-11.
[3] Lakkis, J.M. (2016). Encapsulation and Controlled Release in Bakery Applications, in: Lakkis, J.M. (Ed.), Encapsulation and Controlled Release Technologies in Food Systems, Wiley-Blackwell, Chichester, UK, pp 113-33.
[4] Madene, A., Jacquot, M., Scher, J., Desobry, S. (2006). Flavour encapsulation and controlled release – a review. Int. J. Food Sci. Tech., 41, 1-21.
[5] Jafari, S.M. (2017). Nanoencapsulation Technologies for the Food and Nutraceutical Industries: 1st ed., Elsevier Science, UK, pp. 1-27.
[6] Fathi, M., Martín, Á., McClements, D.J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends.Food. Sci. Tech., 39, 18-39.
[7] Fischer, S., Thümmler, K., Volkert ,B., Hettrich ,K., Schmidt, I., Fischer ,K.( 2008). Properties and Applications of Cellulose Acetate. Macromol.Symp., 262,89-96.
[8] Rezaei, A., Nasirpour, A., Fathi,M.(2015). Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk.Compr. Rev. Food. Sci.Food.Saf., 14, 269-84.
[9] Pérez-Masiá ,R., Lagaron, J.M., Lopez-Rubio, A. (2015). Morphology and Stability of Edible Lycopene-Containing Micro- and Nanocapsules Produced Through Electrospraying and Spray Drying. Food.Bioprod.Process., 8, 459-70.
[10] Pérez-Masiá ,R., López-Nicolás ,R., Periago ,M.J., Ros, G., Lagaron, J.M., López-Rubio, A.( 2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications.Food.Chem., 168, 124-33.
[11] Ghorani, B., Tucker ,N.(2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology.Food.Hydrocoll, 51, 227-40.
[12]López-Rubio, A., Lagaron ,J.M.(2011). Improved incorporation and stabilisation of β-carotene in hydrocolloids using glycerol.Food.Chem.,125, 997-1004.
[13]Kriegel,C.,Arecchi,A.,Kit,K.,McClements,D.J.,Weiss,J.(2008).Fabrication, fictionalization, and application of electrospun biopolymer nanofibers. Crit. Rev. Food. Sci. Nutr .,48, 775-97.
[14] Anu Bhushani,J., Anandharamakrishnan,C.(2014).Electrospinning and electrospraying techniques: Potential food based applications. Trends.Food. Sci. Tech., 38, 21-33.
[15]Son ,W.K., Youk, J.H., Lee, T.S., Park ,W.H.( 2004). Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles.Macromol. Rapid .Commu., 25, 1632-7.
[16] Tungprapa, S., Jangchud, I., Supaphol, P.( 2007). Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polym., 48, 5030-41.
[17] Taepaiboon, P., Rungsardthong, U., Supaphol ,P.(2007). Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur.J.Pharm.Biopharm., 67, 387-97.
[18] Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P.( 2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polym.,48,7546-57.
[19]Wongsasulak ,S., Patapeejumruswong, M., Weiss, J., Supaphol ,P., Yoovidhya, T. (2010). Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J.Food.Eng.,98, 370-6.
[20] Devarayan, K., Kim, B.S.( 2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens. Actuators.B.Chem., 209, 281-6.
[21] Mourtzinos, I., Konteles ,S., Kalogeropoulos ,N., Karathanos ,V.T.(2009). Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food.Chem., 114, 791-7.
[22] Tajkarimi,M.M., Ibrahim, S.A., Cliver ,D.O.(2010).Antimicrobial herb and spice compounds in food. Food. Cont., 21, 1199-218.
[23]Ngarmsak ,M., Delaquis, P., Toivonen ,P., Ngarmsak ,T., Ooraikul ,B., Mazza, G. (2006). Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. J. Food. Prot .,69, 1724-7.
[24] Peña, B., Panisello, C., Aresté, G., Garcia-Valls, R., Gumí, T. (2012). Preparation and characterization of polysulfone microcapsules for perfume release.Chem.Eng. J., 179, 394-403.
[25] Peng, H., Xiong, H., Li, J., Xie, M., Liu ,Y., Bai, C., Chen, L.( 2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food.Chem., 121, 23-8.
[26]Ghorani ,B., Russell ,S.J., Goswami, P. (2013). Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs.Int.J.of Polym. Sci., 1-12.
[27] Theron, S.A., Zussman, E., Yarin, A.L.( 2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions.Polym., 45, 2017-30.
[28] Fong, H., Chun, I., Reneker, D.H. (1999). Beaded nanofibers formed during electrospinning. Polym., 40, 4585-92.
[29] Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., Koocheki, A. (2016).Optimization of elecrospinning process of zein using central composite design.Fiber.Polym., 17(5), 769-777.
[30] Torres-Giner, S., Gimenez, E., & Lagaron, J. M.(2008).Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food .Hydrocoll., 22(4), 601-614.
[31] Ghorani, B.(2012). Production and Properties of Electrospun Webs for Therapeutic Applications. PhD thesis, School of Design, University of Leeds, UK.
[32] Zhou,W., He.J., Cui,S., Gao,W.(2011).Studies of Electrospun Cellulose Acetate Nanofibrous Membranes.The.open.Mater.Sci.J., 51-55.
[33] Van der Schueren, L., De Meyer, T., Steyaert, I., Ceylan, Ö., Hemelsoet ,K., Van Speybroeck ,V., De Clerck, K. (2013). Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydr. Polym.,91, 284-93.
[34] Azizian, S.(2004). Kinetic models of sorption: a theoretical analysis. J. Colloid. Interface .Sci., 276, 47-52.
[35] Shenoy, S.L., Bates ,W.D., Frisch ,H.L., Wnek, G.E.(2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polym.,46,3372-84.
[36]Deitzel ,J.M., Kleinmeyer, J., Harris, D., Beck Tan, N.C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles.Polym., 42, 261-72.
[37]Kamal ,H., Abd-Elrahim ,F.M., Lotfy ,S.(2014). Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation.J.Radiat.Res.Appl.Sci .,7, 146-53.
[38] Balachandran, V., Parimala, K.(2012). Vanillin and isovanillin: Comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations. Spectrochimica Acta .A. Mol. and Biomol.Spectrosc., 95,354-68.
[39] Rezaei,A.,Nasirpour,A.,Tavanai,H., Fathi, M.(2016). A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour. Frag. J., 31, 442-447.
[40]Hrib,J.,Sirc,J.,Hobzova,R.,Hampejsova,Z.,Bosakova,Z.,Munzarova,M.,Michalek,J.(2015).Nanofibers for drug delivery-incorporation and release of model molecules,influence of molecular weight and polymer structure.Beilstein.J.Nanotechnol.,6,1939-1945.
[41]Chen,S.C.,Huang,X.B.,Cai,X.M.,Lu,J.,Yuan,J.,Shen,J.(2012). The infleunce of fiber diameter f electrospun poly(lactic acid) on drug delivery.Fiber.Polym.,13,1120-1125.
 [42] میری،م.ا. (1395) استفاده از نانوالیاف حاصل از الکتروریسی زئین به‌عنوان نانوحامل ویتامین C : تعیین ویژگی‌ها و مطالعه سینتیک پایداری. پایان‌نامه دکتری صنایع غذایی،دانشگاه فردوسی مشهد،دانشکده کشاورزی و منابع  طبیعی.