Fenugreek seed gum: extraction optimization and evaluation of antioxidant properties

Document Type : Research Article

Authors

1 PhD student, Dept. of Food Science and Technology, College of Agriculture, Ferdowsi University of Mashhad

2 Associate professor, Dept of Food Science and Technology, College of Agriculture, Ferdowsi University of Mashhad

3 Associate professor, Dept. of Food Science and Technology, College of Agriculture, Ferdowsi University of Mashhad

4 Professor,Dept. of Food Science and Technology, College of Agriculture, Ferdowsi University of Mashhad

Abstract

In the present study, optimization of fenugreek gum extraction for maximum values of yield, viscosity, total carbohydrate and minimum value of protein was done using response surface methodology. A central composite design with three independent variables including extraction temperature (25-75 ℃), extraction time (1-4 hr), and water to seed ratio (20-60 ml/g) was used to study the behaviour of variables. ANOVA results showed that second-order polynomial model was the best for interpretation of responses' behaviour. Statistical analysis revealed that all the variables significantly (p0.05). Applying numerical optimization method, optimum extraction conditions were found to be extraction temperature of 60.71 °C, extraction time of 3.33 hr, and water to seed ratio of 44.6 ml/g. At the optimum point, extraction yield, viscosity, total carbohydrate and protein content were evaluated to be 21.18 %, 29.06 m Pa.s, 70.98%, and 4.19%, respectively. Furthermore, the antioxidant activity of the extracted gum at optimum point was evaluated by determining DPPH radical scavenging activity, Ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity. All the above antioxidant evaluation indicated that fenugreek gum exhibited reasonable antioxidant activity in a concentration dependent manner. The fenugreek gum showed 43.23% DPPH radical scavenging activity, 650.76 μΜ FRAP and 46.95 hydroxyl radical scavenging activity at concentration of 1 mg/ml which were 50, 67 and 53.50% of ascorbic acid, respectively.

Keywords

Main Subjects


[1] Williams, P. A., Phillips, G. O. (2000). Introduction to food hydrocolloids, in: Williams, P. A., Phillips, G. O. (Eds.) Handbook of hydrocolloids,CRC Press, New York, pp1–19.
[2] Meier, H., Reid, J. S. G. (1982). Reserve polysaccharides other than starch in higher plants, in: Loewus, F. A., Tanner, W. (Eds.) Encyclopaedia of Plant Physiology, Springer, Berlin, pp 418–471.
[3] Estévez, A. M., Saenz, C., Hurtado, M. L., Escobar, B., Espinoza, S., Suarez, C. (2004). Extraction methods and some physical properties of mesquite (Prosopis chilensis Stuntz) seed gum. J. Sci. Food Agr., 84, 1487–1492.
[4] Stephen, A. M., Churms, S. C. (1995). Introduction, in: Stephen, A. M., Churms, S. C. (Eds.), Food polysaccharides and their application, CRC Press, New York, pp 1–18.
[5] Brummer, Y., Cui, W., Wang, W. (2003). Extraction, purification and physicochemical     characterization of fenugreek gum. Food Hydrocolloid., 17, 229–236.
[6] Robinson, G., Ross-Murphy, S. B., Morris, E. R. (1982). Viscosity–molecular weight relationship, intrinsic chain flexibility and dynamic solution properties of guargalactomannan. Carbohyd. Res., 107, 17–32.
[7] Pauly, M., Freis, O., Pauly, G. (1999). Galactomannan and xyloglucan: bioactive polysaccharides. Cosmet. Toiletries., 114, 65–78.
[8] Valenga, F., Lucysyn, N., Ono, L., de Souza, C. F., Lubambo, A., Sierakowski, M. (2011). Galactomannan-Alginate synergism applied in albumin encapsulation. In: Macromolecular Symposia. (pp. 99-106) WILEY‐VCH Verlag.
[9] Cerqueira, M.A., Bourbon, A.L., Pinheiro, A.C., Martins, J.T., Souza, B.W.S., Teixeira, J.A., Vicent, A.A. (2011). Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Tech., 22, 662-671.
[10] Kapoor, V. P., Pandey, K., Khanna, M., Dwiredi, A. K., Singh, S. (1999). Pharmaceutical applications of the galactomannan from the seeds of Cassia javanica Linn. Trends Carbohyd. Chem., 5, 61–69.
[11] Cruz Alcedo, G. E. (1999). Production and characterisation of prosopis seed galactomannan, PhD Thesis, Swiss Federation Institute of Technology, Zurich. Food Eng., 77, 295–30.
[12] Jiang. J.X., Zhu, L.W., Zhang, W.M., Sun, R.C. (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. Int. J. Polym. Mater., 56, 1145–1154.
[13] Srichamroen, A., Vasanthan, T., Ooraikul, B., Basu, T. K. (2005). Isolation of galactomannan from fenugreek seeds. In: 2005 IFT Annual Meeting. (pp. 245-254 ) New Orleans, Louisiana, USA.
[14] Andrews, P., Hough, L., Jones, J. K. N. (1952). Mannose-containing polysaccharides. Part 1. The galactomannan of fenugreek seed (Trigonella foenum-graecum). J. Am. Chem.  Soc., 74, 2744–2750.
[15] Tiwari, A. K. (2004). Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. Curr. Sci. India, 86, 1092-1102.
[16] Cadenas, E., Davies, J. A. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Bio. Med., 29, 222-230.
[17] Sarma, A. D., Anisur, R. M., Ghosh, A. K. (2010). Free radicals and their role in different clinical conditions: an overview.  Int. J. Pharma Sci. Res., 1, 185-192.
[18] Witschi, H. P. (1986). Enhanced tumour development by butylated hydroxytoluene (BHT) in the liver, lung and gastro-intestinal tractFood Chem. Toxicol., 24, 1127-1130.
[19] Grice, H. C. (1988). Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol., 26, 717-723.
[20] Kardošová, A., Machova, E. (2006). Antioxidant activity of medicinal plant polysaccharidesFitoterapia., 77, 367-373.
[21] Wang, Q., Sun, Y., Yang, B., Wang, Z., Liu, Y., Cao, Q., Kuang, H. (2014). Optimization of polysaccharides extraction from seeds of Pharbitis nil and its antioxidant activity. Carbohyd. polym., 102, 460– 466.
[22] Ge, Q., Huang, J., Mao, J. W., Gong, J. Y., Zhou, Y. F. and Huang, J. X. (2014). Optimization of total polysaccharide extraction from Herba lophatheri using RSM and antioxidant activities. Int. J. Biol. Macromol., 67, 37-42.
[23] Zou, C., Du, Y. M., Li, Y., Yang, J. H., Feng, T., Zhang, L., Kennedy, J. F. (2008).  Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro. Carbohyd. Polym., 73, 322–331.
[24] Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int., 22, 203–224.
[25] Hannan, J. M. A., Ali, L., Rokeya, B., Khaleque, J., Akhter, M., Flatt, P. R., Abdel-Wahab, Y. H. A. (2007). Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Brit. J. Nutr., 97, 514–521.
[26] Amin, A. M., Ahmad, S. A., Yin Yin, Y., Yahaya, N., Ibrahim, N. (2007). Extraction, purification and characterization of durian seed gum. Food Hydrocolloid., 21,273–279.
[27] Cui, W., Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Res. Int., 29, 397-402.
[28] Sav, A. J., Meer, T. A., Fule, R. A., Amin, P. D. (2014). Investigational studies on highly purified fenugreek gum as emulsifying agent. J. Disper. Sci. Technol., 34, 657–662. 
[29] Singthong, J., Ningsanond, S., Cui, S. W. (2009). Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves. Food Chem., 114, 1301-1307.
[30] Razavi, S. M. A., Mortazavi, S. A., Matia-Merino, L., Hosseini-Parvar, S. H., Motamedzadegan, A., Khanipour, E. (2009). Optimization study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Tech., 44, 1755- 1762.
[31] AOAC. (1995). Official methods of analysis. Arlington: Association of Official Analytical Chemists.
[32] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356.
[33] Koocheki, A., Taherian, A. R., Razavi, S. M. A., Bostan, A. (2009). Response surface   methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloid., 23, 2369-2379.
[34] Shen, S., Chen, D., Li, X., Li, T., Yuan, M., Zhou, Y., Ding, C. (2014). Optimization of extraction process and antioxidant activity of polysaccharides from leaves of Paris polyphylla. Carbohyd. Polym., 104, 80–86.  
[35]   Fan, J., Feng, H., Yu, Y., Sun, M., Liu, Y., Li, T., Sun, X., Liu, S., Sun, M. (2017). Antioxidant activities of the polysaccharides of Chuanminshen violaceum.  Carbohyd. polym., 157, 629-636.         
[36] Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”:  the FRAP assay. Anal. Biochem., 23, 70-76.
[37] Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, New York
[38] Ye, C. L., Jiang, C. J. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohyd. Polym., 84, 495–502.
[39] Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S. M. A., Taherian, A. R. (2009). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 91, 490–496.
[40] Jouki, M., Mortazavi, S. A., Yazdi, F. T., Koocheki, A. (2014). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biol. Macromole., 66, 113-124.
[41] Wu, Y., Cui, S. W., Tang, J., Gu, X. (2007). Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chem., 105, 1599–1605.
[42] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology, Food Hydrocolloid., 25, 915-920.
[43] Bendahou, A., Dufresne, A., Kaddami, H., Habibi, Y. (2007). Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera LCarbohyd. Polym., 68, 601-608.
[44] Zhang, X., Chen, J., Mao, M., Guo, H., Dai, Y. (2014). Extraction optimization of the polysaccharide from Adenophorae radix by central composite design. Int. J. Biol. Macromole., 67, 318-322.
[45] Li, P., Zhou, L., Mou, Y., Mao, Z. (2015). Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity. Int. J. Biol. macromole., 72, 19-27.
[46] Hammi, K.M., Hammami, M., Rihouey, C., Le Cerf, D., Ksouri, R., Majdoub, H. (2016). Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem., 212, 476-484.
 [47]فرهمند، ع.؛ وریدی، م.؛ کوچکی، آ. (1393) تعیین شرایط بهینه استخراج موسیلاژ دانه به به کمک طرح مرکب مرکزی و ارزیابی برخی خصوصیات عملکردی آن. مجموعه مقالات  نخستین همایش ملی الکترونیکی دستاوردهای نوین در علوم غذایی، زاهدان.
[48] Garcia-Ochoa, F., Casas, J. A. (1992). Viscosity of locust bean gum solutions. J. Sci. Food and Agri., 59, 97–100.
[49] Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S., Kadkhodaee, R., Milani, J. M. (2010). Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng., 33, 861-882.
[50] Bostan, A., Razavi, S. M., Farhoosh, R. (2010). Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface. Int. J. Food Prop., 13, 1380-1392.
[51] Amid, B., Mirhosseini, H. (2012). Optimization of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low cost source of hydrocolloid. Food Chem., 132, 1258-1268.
[52] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloid., 25, 915-920.
[53] Chaurasia, M., Chourasia, M. K., Jain, N. K., Jain, A., Soni, V., Gupta, Y., Jain, S. K. (2008). Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. Aaps Pharmscitech., 7, 143.
[54] Glicksman, M. (1982). Food hydrocolloids, CRC Press, New York.
[55] Chen, R., Jin, C., Tong, Z., Lu, J., Tan, L., Tian, L., Chang, Q. (2016). Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohyd. Polym., 136, 187-197.
[56] Mazarei, F., Jooyandeh, H., Noshad, M., Hojjati, M. (2017). Polysaccharide of caper (Capparis spinosa L.) leaf: extraction optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol., 95, 224-231.
[57] Yang, S., Li, Y., Jia, D., Yao, K., Liu, W.  (2017). The synergy of Box-Behnken designs on the optimization of polysaccharide extraction from mulberry leaves. Ind. Crop Prod., 99, 70-78.
[58] Quinn, P. J. (1998). Effects of temperature on cell membranes. Symp. Soc. Exp. Biol., 42, 237-258.
[59] Li, J., Ai, L., Hang, F., Ding, S., Liu, Y.  (2014). Composition and antioxidant activity of polysaccharides from jujuba by classical and ultrasound extraction. Int. J. Biol. Macromol., 63, 150-153.
[60] Luo, Q. L., Tang, Z. H., Zhang, X. F., Zhong, Y. H., Yao, S. Z., Wang, L. S., Luo, X. (2016). Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol., 89, 219-227.
[61] Guo, L., Zhu, W., Xu, F., Liu, M., Xie, Y., Zhang, J.  (2014). Optimized ultrasonic-assisted extraction of polysaccharides from Cyclina sinensis and evaluation of antioxidant activities in vitro. CyTA J. Food, 12, 32-39.
[62] Chen, Y., Xie, M. Y., Nie, S. P., Li, C., Wang, Y. X. (2008). Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem., 107, 231-241.
[63] Tan, L. H., Zhang, D., Yu, B., Zhao, S. P., Wang, J. W., Yao, L., Cao, W. G.  (2015). Antioxidant activity and optimization of extraction of polysaccharide from the roots of Dipsacus asperoidesInt. J. Biol. Macromol., 81, 332-339.
[64] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W. (2013). Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohyd. Polym., 96, 148-155.
[65] Qi, H., Zhang, Q., Zhao, T., Hu, R., Zhang, K. Li, Z. (2006). In vitro  antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett., 16, 2441-2445.
[66] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W. (2002). Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioogran. Med. Chem ., 10, 4067-4073.
[67] Jeong, J.B., Seo, E.W., Jeong, H.J. (2009). Effect of extracts from pine needle against oxidative DNA damage and apoptosis induced by hydroxyl radical via antioxidant activity. Food and Chem. Toxic., 47, 2135-2141.
[68] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W.  (2013). Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohyd. Polym., 96, 148-155.