Effect of ZnO nanoparticles on the physico-mechanical properties of agar/kappa carrageenan bilayer film

Document Type : Research Article


1 Associate Professor, Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Assistant Professor, Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Ph. D of Seafood Processing, Department of Fisheries, Tarbiat Modares University, Noor, Iran.

4 Ph. D. Student, Department of Seafood Processing, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

5 Ms.C of Seafood Processing, Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran


This study was developed to evaluate the effect of ZnO nanoparticles on properties of bilayer agar- Ka-carrageenan film. Bilayer nanocomposite films were prepared with addition of ZnO nanoparticles at different concentrations of 0, 0.5, 1, 1.5 % w/w on kappa carrageenan and eventually addition this mixture on polymer was produced from agar using the casting method. The Properties of nanocomposites including color, water solubility, moisture content, mechanical properties, transparency, and water vapor permeability were investigated. The results showed that the addition of ZnO nanoparticles increased opacity of the films in different concentrations and the highest opacity was observed in the film with 1.5 % of the nanoparticles. The water solubility of the films decreased significantly from 84.96% in the bilayer film to 32.45% in the nanocomposite containing 0.5 % ZnO. Also, addition of 0.5% ZnO increased the tensile strength and elongation at break of the film significantly. Water vapor permeability of the bilayer films decreased significantly from 0.61 to 0.34 (10-10 g/ms Pa) with addition of 0.5 % ZnO.


Main Subjects

[1] Baldwin, E. A., Hagenmaier, R., Bai, J. (Eds.). (2011). Edible coatings and films to improve food quality. CRC Press.
 [2] Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., Mortensen, G. )1999(. Potential of biobased materials for food packaging. Trends Food Sci. Technol., 10(2), 52-68.
[3] Espitia, P. J. P., Soares, N. D. F. F., Teófilo, R. F., dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., Medeiros, E. A. A. )2013(. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym., 94(1), 199-208.
[4] Embuscado, M. E., Huber, K. C. (2009). Edible films and coatings for food applications., Springer, New York, pp 213-214.
[5] Holmberg, K) .2009(. Coatings tribology: properties, mechanisms, techniques and applications in surface engineering, 2th ed., Elsevier Science, Amsterdam, Boston, London.
[6] Sorrentino, A., Gorrasi, G., Vittoria, V.) 2007(. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol., 18(2), 84-95.
[7] Azeredo, H.) 2009(. Nanocomposites for food packaging applications. Food Res. Int., 42(9), 1240-1253.
[8] Kovačević, V., Vrsaljko, D., Lučić Blagojević, S., Leskovac, M. (2008). Adhesion parameters at the interface in nanoparticulate filled polymer systems. Polym. Eng. Sci., 48(10), 1994-2002.
 [9] Shi, L., Zhou, J., Gunasekaran, S.) 2008(. Low temperature fabrication of ZnO–whey protein isolate nanocomposite. Mater. Lett., 62(28), 4383-4385.
[10] Kumar, A.P., Singh, R.P.) 2008(. Bio composites of cellulose reinforced starch improvement of properties by photo-induced crosslinking. Bioresour. Technol., 99 (18), 8803–8809.
[11] Azeredo, H., Mattoso, L.H.C., Wood Williams, T.G., Avena‐Bustillos, R.J., McHugh, T.H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci., 74(5), 31-35.
[12] Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., Li, X. L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J., 160(1), 378-382.
[13] Vejdan, A., Ojagh, S. M., Adeli, A., Abdollahi, M. (2016). Effect of TiO 2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT- Food Sci. Technol., 71, 88-95.
[14] Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., Gastaldi, E. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J. Membr. Sci., 289(1), 159-168.
[15] ASTM. (1996). Standard test methods for tensile properties of thin plastic sheeting. Annual book of ASTM. American Society for testing and Material. Philadelphia, 882-910.
[16] Atef, M., Rezaei, M., Behrooz, R. 2015. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll., 45, 150-157.
[17] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120(1), 193-198.
[18] Ramasubbu, A., Karunakaran, K., Vasanthkumar, S. (2012). Synthesis and characterization of zinc oxide–agar nanocomposite. Int. J. Nano Dimens., 2(3), 171-176.
[19] Santos, T. M., Men de Sá Filho, M. S., Caceres, C. A., Rosa, M. F., Morais, J. P. S., Pinto, A. M., Azeredo, H. M. 2014. Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocoll., 41, 113-118.
[20] Tunc, S., Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl. Clay Sci., 48 (3), 414-424.
[21] Marvizadeh, M. M., Nafchi, A. M., Jokar, M. (2014). Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. J. Chem. Health. Rsk., 4(4).
[22] Yu, J., Yang, J., Liu, B., Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour. Technol., 100(11), 2832-2841.
[23] Adame, D., Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide /clay nanocomposites and the implications for gas diffusion. Appl. Clay Sci., 42, 545-552.
[24] Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll., 32(2), 416-424.
[25] Ali, A., Ansari, A. A., Kaushik, A., Solanki, P. R., Barik, A., Pandey, M. K., Malhotra, B. D. (2009). Nanostructured zinc oxide film for urea sensor. Mater. Lett., 63(28), 2473-2475.
[26] Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Bharimalla, A. K., Mhaske, S. T. (2012). Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int. J. Biol. Macromol., 51(5), 1008-1013.
[27] Pereda, M., Amica, G., Rácz, I., Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J. Food Eng., 103(1), 76-83.
[28] Dhoke, S. K., Narayani, R., Khanna, A. S. (2012). Effect of Nano-Zinc Oxide Particles on the Performance Behavior of Waterborne Polyurethane Composite Coatings. Int. J. Mater. Sci., 68-74.
[29] Yu, J., Yang, J., Liu, B., Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresour. Technol., 100(11), 2832-2841.
[30] Bourtoom, T., Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT- Food Sci. Technol., 41(9), 1633-1641.
[31] Almasi, H., Ghanbarzadeh, B., Entezami, A. A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol., 46(1), 1-5.
[32] Casariego, A., Souza, B., Cerqueira, M., Teixeira, J., Cruz, L., Díaz, R., Vicente, A. (2009). Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloid., 23(7), 1895-1902.