Effect of Pistacia atlantica gum oil on antimicrobial and antioxidant properties of edible starch film

Document Type : Research Article

Authors

1 M. Sc. Student, Department of Food Science and Technology, Ramin Agriculture and Natural Resources University of Khuzestan, Iran

2 Assistant Professor, Department of Food Science and Technology, Ramin Agriculture and Natural Resources University of Khuzestan, Iran

3 Associate Professor, Department of Food Science and Technology, Ramin Agriculture and Natural Resources University of Khuzestan, Iran

Abstract

Pistacia atlantica is the dominant species of Pistachio in iran. Mastic Gum of Pistacia atlantica is composed of resinous exudates obtained from the stem of Pistacia atlantica that is called Saghghez in IRAN. Since the antimicrobial and antioxidant properties of essential oil (EO) from various parts of this plant is proved in the several studies, therefor in order to produce active starch film, the EO of Pistacia atlantica gum was selected. Firstly, the EO of Pistacia atlantica gum was extracted by hydrodistillation method, then it was analyzed by the GC/MS technique. The result showed that the major component of EO obtained was α-pinene (77.1٪). The starch film containing Pistacia atlantica essential oil at 0, 0.5, 1 and 2٪ (V/V) were prepared by a casting method and their antimicrobial and antioxidant properties were evaluated. According to the results, the films containing EOs showed desired antimicrobial and antioxidant activity by increasing the amount of EO, these properties are exhibited with greater intensity that the spectrum of the ATF-FTIR was evidenced these results.

Keywords

Main Subjects


[1]. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol., 14(3), 71-78.
[2]. Janjarasskul, T., Krochta, J. M. (2010). Edible Packaging Materials. Annu. Rev. Food Sci. Technol., 1, 415- 448.
[3]. Falguera, V., Quintero, J. P., Jimenez, A., Munoz, J. A., Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol., 22, 292-303.
[4]. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food  Bioproc. Technol., 5(6), 2058-2076.
[5]. Singh, G., Kapoor, I.P.S., Singh, P., Heluani, C.S. Lampasona, M.P., Catalan, C.A.N. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol., 46, 3295–3302.
[6]. De Moura, M. R., Mattoso, L. H., Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng., 109(3), 520-524.
[7]. Muñoz-Bonilla, A., Fernández-García, M. 2012. Polymeric materials with antimicrobial activity. Prog. Polym. Sci., 37(2), 281-339.
[8]. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci., 78, 90−103.
[9]. Manso, S., Pezo, D., Gómez-Lus, R., Nerín, C. (2014). Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control, 45, 101-108
[10]. Sánchez-González, L., Quintero Saavedra, J.I. Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydroc., 33, 92-98.
[11]. Mehdizadeh, T., Tajik, H., Rohani, S. M. R., Oromiehie, A. R. (2012). Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. In: Veterinary Research Forum  p, 167. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
[12]. Avila-Sosa, R., Palou, E., Mungua, M. T. M., Nevarez-Moorillon, G. V., Cruz, A. R. N., Lopez-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Mic., 153, 66-72.
[13]. Bonilla, J., Talón, E., Atarés, L., Vargas, M., Chiralt, A. (2013). Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J. Food Eng., 118(3), 271-278.
[14]. Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J., Khaksar, R. (2013). Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carb. Pol., 98, 1117-1126.
[15]. Salarbashi, D., Tajik, S., Ghasemlou, M., Shojaee-Aliabadi, S., Noghabi, M. S., Khaksar, R. (2013). Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carb. Pol., 98(1), 1127-1136.
[16]. Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind. Crops  Prod., 67,403-413.
[17]. Padulosi, S., Hadj-Hassan, A. (1998). Towards a comprehensive documentation of distribution and use of Pistacia: genetic diversity in central and West Asia, North Africa and Mediterranean Europe. Report of the IPGRI Workshop. 16-26.
[18]. Farhoosh, R., Tavassoli-Kafrani, M.H., Sharif, A. (2013). Assaying Antioxidant Characteristics of Sesame Seed, Rice Bran, and Bene Hull Oils and their Unsaponifiable Matters by Using DPPH Radical-Scavenging Model System. J. Agri. Sci. Technol.. 15, 241-253.
[19]. Tohidi, M., Khayami, M., Nejati, V., Meftahizade, H. (2011). Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. J. Med. Plant Res., 5, 4310-4314.
[20]. Mohagheghzadeh, A., Faridi, P., Ghasemi, Y. (2010). Analysis of mount Atlas mastic smoke: A potential fod preservative. Fitoterapia. 81,57-580.
[21]. Hatamnia, A. A., Abbaspour, N., Darvishzadeh, R. (2014). Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food chem., 145, 306-311.
[22]. Gourine, N., Yousfi, M., Bombarda, I., Nadjemi, B., Stocker, P., Gaydon, E.M. (2010). Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind. Crops Prod., 31, 203–208.
[23]. Hosseini, F., Adlgostar, A., Sharifnia, F. (2013). Antibacterial activity of Pistacia extracts on Streptococcus mutans biofilm. Int. Res. J. Biol. Sci.,  2(2),1-7.
[24]. British Pharmacopoeia. (1988), London, HMSO, (2), pp, 137–8.
[25]. Barzegar, H., Azizi, M. H., Barzegar, M., Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carb. Pol., 110, 26-31.
[26]. Siripatrawan, U., Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775.
[27]. Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995).Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1): 25-30.
[28]. Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac. J. Trop. Dis., 1,40-44.
[29]. Shen, X. L., Wu, J. M., Chen, Y., Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24(4), 285-290.
[30]. Souza, A. C., Dias, A. M., Sousa, H. C., Tadini, C. C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carb, Pol., 102, 830-837.
[31]. Papageorgiou, V. P., Assimopoulou, A. N., Yannovits-Argiriadis, N. (1999). Chemical composition of the essential oil of Chios turpentine. J. Essen. Oil Res., 11(3), 367-368.
[32]. Koutsoudaki, C., Krsek, M., Rodger, A. (2005). Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J. Agric. Food Chem., 53(20), 7681-7685.
[33]. Hussain, A.I., Anwar, F., Hussain Sherazi, S.T., Przybylski, R., (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 108, 986–995.
[34]. Alma, M. H., Nitz, S., Kollmannsberger, H., Digrak, M., Efe, F. T., Yilmaz, N. (2004). Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J. Agric. Food Chem., 52(12), 3911-3914.
[35]. Delazar, A., Reid, R. G., Sarker, S.  D. (2004). GC–MS analysis of the essential oil from, the oleoresin of Pistacia atlantica var. mutica. Chem. Natural Comp., 40, 24–27.
[36]. Cowan, M.M. (1999). Plant products as antimicrobial agents. Clin. Microbiology Rev., 12, 564–582.
[37]. Shaaban, H. A., Mahmoud, K. F. (2014). In-vitro antibacterial and antioxidant properties of starch/chitosan edible composite film incorporated with thyme essential oil. J. Arab Soci.  Med. Res., 9(2), 54.
[38]. Martucci, J.F. Gende, L.B.  Neira, L.M., Ruseckaite, R.A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crops Prod., 71,205–213.
[39]. Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., Neng, N.R., Nogueira, J.M.F., Saraiva, J.A., Nunes, M.L. (2012). European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod., 36, 81-87.
[40]. Gomez-Estaca, J., Gimnez, B., Montero, P., Gomez-Guillén, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J. Food  Eng., 92, 78-85.
[41]. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Food Sci. Technol., 26(2), 211-219.
[42]. Weerakkody, N. S., Caffin, N., Turner, M. S. Dykes, G. A. (2010). In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control, 21, 1408-1414.
[43]. Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S., M. andKhaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. Int. J.  Biol. Macro., 69, 282-289.
[44]. Chaibi, A., Ababouch, L. H., Belasri, K., Boucetta, S., Busta, F. F. (1997). Inhibition of germination and vegetative growth of Bacillus cereus and Clostridium botulinum 62A spores by essential oils. Food Microbiology, 14(2), 161-174.
[45]. Chi, P.T.L. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oils extracted from citrus varieties in Vietnam. Thesis of master degree. Hochiminh city international university. Vietnam, 1-75.
[46]. Benhammou N., Bekkara F.A., Panovska T.K. (2008). Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J.  Pharm. Pharmacol., 2(2), 022-028.
[47]. Paraschos, S., Magiatis, P., Gousia, P., Economou, V., Sakkas, H., Papadopoulou, C., Skaltsounis, A. L. (2011). Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food Chem., 129(3), 907-911.
[48]. Djenane, D., Yangüela, J., Yangüela, L., Djerbal, M., Roncalés, P. (2011). Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control. 22, 10 46-1053.
[49]. Raman, A., Weir, U., Bloomfield, S. F. (1995). Antimicrobial effects of teatree oil and its major components on Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes. J. Appl. Microbiol., 21, 242-245.
[50]. Barra, A., Coroneo, V., Dessi, S., Cabras, P., Angioni, A. (2007). Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem., 55(17), 7093-7098.
[51]. Hyldgaard, M., Mygind, T., Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies and interaction with food matrix components. 3(12), 1-24.
[52]. Thormar, H. (2011). Lipids and Essential Oils as Antimicrobial Agents. John Wiley & Sons. P, 220.
[53]. Zhang, L., Li, R., Dong, F., Tian, A., Li, Z., Dai, Y.( 2015). Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem, 166, 107-114.
[54]. Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169.
[55]. Zhang, Y., Han, J. H. (2006). Plasticization of pea starch films with monosaccharides and polyols. J.  Food Sci., 71(6,:E253-E261.
[56]. Mano, J. F., Koniarova, D., Reis, R. L.(2003).Thermal properties of thermoplastic of Materials. Sci. Mater. Med., 14, 127–135.