Optimization of physical, mechanical and thermal properties of myofibrillar protein–cellulose nanocrystal nanocomposite

Document Type : Research Article


1 Professor., Department of Seafood Processing, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran

2 Ph. D. Student., Department of Seafood Processing, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran

3 Associated Prof., Department of Seafood Processing, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran

4 Assistant Prof., Department of Seafood Processing, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran


Nanocrystalline cellulose (NCC) reinforced fish myofibrillar protein (FMP)-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 2, 4 and 6% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 6 wt% NCC content exhibits the highest tensile strength which was increased by 49% compared to the control. The formation of percolated networks of cellulose nanocrystals within protein matrix resulted in improving the mechanical properties of nanocomposites.  Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 33% decrease due to 6 wt% NCC loading. The moisture sorption and water solubility studies revealed that the addition of cellulose nanocrystals reduced the moisture affinity of FMP, which is very favorable for edible packaging applications. Molecular interactions between FMP and NCC were supported by Fourier Transform Infrared Spectroscopy. Investigation of DSC factors (Tg, Tc, Tm) shown that thermal stability of FMP-based nanocomposite films was improved after incorporation of NCC.


Main Subjects

 [1] Rhim, J. W., Park, H. M., Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Prog. Polym. Sci, 38, 1629-1652.
[2] Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Bharimalla, A. K., Mhaske, S. T. (2012). Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int. J. Biol. Macromol, 51, 1008-1013.
[3] Pires, C., Ramos, C., Teixeira, G., Batista, I., Mendes, R., Nunes, L., Marques, A. (2011). Characterization of biodegradable films prepared with hake proteins and thyme oil. J. Food Eng, 105, 422-428.
[4] Arfat, Y. A., Benjakul, S., Prodpran, T., Osako, K. (2014). Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocoll, 39, 58-67.
[5] Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., Tehrany, E.A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll, 35, 159-169.
[6] Limpan, N., Prodpran, T., Benjakul, S., Prasarpran, S. (2010). Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level. J. Food Eng, 100, 85-92.
[7] da Rocha, M., Loiko, M. R., Gautério, G. V., Tondo, E. C., Prentice, C. (2013). Influence of heating, protein and glycerol concentrations of film-forming solution on the film properties of Argentine anchovy (Engraulis anchoita) protein isolate. J. Food Eng, 116, 666-673.
[8] Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., Marques, A. (2013). Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocoll, 30, 224-231.
[9] Limpan, N., Prodpran, T., Benjakul, S., Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll, 29, 226-233.
[10] Blanco-Pascual, N., Fernández-Martín, F., Montero, P. (2014). Jumbo squid (Dosidicus gigas) myofibrillar protein concentrate for edible packaging films and storage stability. LWT- Food Sci Techno, 55, 543-550.
[11] Hamaguchi, P. Y., WuYin, W., Tanaka, M. (2007). Effect of pH on the formation of edible films made from the muscle proteins of Blue marlin (Makaira mazara). Food Chem, 100, 914-920.
[12] Cuq, B., Aymard, C., Cuq, J.-L., Guilbert, S. (1995). Edible packaging films based on fish myofibrillar proteins: formulation and functional properties. J. Food Sci, 60, 1369e1374.
[13] Nie, X., Gong, Y., Wang, N., Meng, X. (2015). Preparation and characterization of edible myofibrillar protein-based film incorporated with grape seed procyanidins and green tea polyphenol. LWT- Food Sci Techno, 64, 1042-1046.
[14] Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J. A., Nunes, M. L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT- Food Sci Techno, 59, 533-539.
[15] Prodpran, T., Benjakul, S., Phatcharat, S. (2012). Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. Int. J. Biol. Macromol, 51, 774-782.
[16] Sorrentino, A., Gorrasi, G., Vittoria, V. (2007).  Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol, 18, 84-95.
[17] Ma, H., Burger, C., Hsiao, B. S., Chu, B. (2014). Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J. Membr. Sci, 454, 272-282.
[18] Lee, S. Y., Chun, S. J., Kang, I. A., Park, J. Y. (2009). Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J. Ind. Eng. Chem, 15, 50-55.
[19] Jensen, A., Lim, L. T., Barbut, S., Marcone, M. (2015). Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT- Food Sci Techno, 60, 162-170.
[20] Panaitescu, D. M., Frone, A. N., Ghiurea, M., Chiulan, I. (2015). Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Ind. Crops Prod, 70, 170-177.
[21] Khan, A., Khan, R.A., Salmieri, S., Tien, C.L., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R. Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym, 90, 1601-1608.
[22] Cao, X., Chen, Y., Chang, P. R., Muir, A. D., Falk, G. (2008). Starch-based nanocomposites reinforced with flax cellulose nanocrystals. EXPRESS Polym. Lett, 2, 502-510.           
[23] Chang, P. R., Jian, R., Zheng, P., Yu, J., Ma, X. (2010). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr. Polym, 79, 301-305.
[24] Zhou, Y., Fu, S., Zheng, L., Zhan, H. (2012). Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. EXPRESS Polym. Lett, 6, 794-798.
[25] Georgea, J., Siddaramaiah. (2012). High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr. Polym, 87, 2031-2037.
[26] Trovatti, E., Fernandes, S. C., Rubatat, L., da Silva Perez, D., Freire, C. S., Silvestre, A. J., Neto, C. P. (2012). Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos. Sci. Technol, 72, 1556-1561.
[27] Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll, 32, 416-424.
 [28] ASTM. (2010). Standard Test Methods for Water Vapor Transmission of Materials. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Material, Designation, E96/E96M–10.
[29] Lavorgna, M., Piscitelli, F., Mangiacapra, P., Buonocore, G. G. (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr. Polym, 82, 291-298.
[30] ASTM. (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Material, D 882-02.
[31] Jiang, Y. F., Li, Y. X., Chai, Z., Leng, X. J. (2010). Study of the physical properties of whey protein isolate and gelatin composite films. J. Agric. Food. Chem, 58, 5100-5108.
[32] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem, 122, 161-166.
[33] Wu, Q., Meng, Y., Concha, K., Wang, S., Li, Y., Ma, L., Fu, S. (2013). Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Ind. Crops Prod, 48, 28-35.
[34] Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind. Crops Prod, 67, 403-413.
[35] Peng, X. W., Ren, J. L., Zhong, L. X., Sun, R. C. (2011). Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. BioMacromol, 12, 3321-3329.
[36] Fernandes, S. C., Freire, C. S., Silvestre, A. J., Neto, C. P., Gandini, A., Berglund, L. A., Salmén, L. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym, 81, 394-401.
[37] Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int. J. Biol. Macromol, 54, 166-173.
[38] Dehnad, D., Emam-Djomeh, Z., Mirzaei, H., Jafari, S. M., Dadashi, S. (2014). Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydr. Polym, 105, 222-228
[39] Atef, M., Rezaei, M., Behrooz, R. (2015). Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll, 45, 150-157.
[40] Stuchell, Y. M., Krochta, J. M. (1994). Enzymatic treatments and thermal effects on edible soy protein films. J. Food Sci, 59, 1322-1337.               
[41] Pereda, M., Dufresne, A., Aranguren, M. I., Marcovich, N. E. (2014). Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym, 101, 1018-1026.
[42] De Paula, E. L., Mano, V., Pereira, F. V. (2011). Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d, l-lactide). Polym. Degrad. Stab, 96(9), 1631-1638.
 [43] Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., Gastaldi, E. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J. Membr. Sci, 289, 159-168.
[44] Wittaya, T. (2009). Microcomposites of rice starch film reinforced with microcrystalline cellulose from palm pressed fiber. Int. Food Res. J, 16, 493-500.
[45] Bilbao-Sainz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G. McHugh, T. H.) 2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J. Agric. Food. Chem, 58, 3753-3760.
[46] Chen, G., Liu, H. (2008). Electrospun cellulose nanofiber reinforced soybean protein isolate composite film. J. Appl. Polym. Sci, 110, 641-646.
[47] Huq, T., Salmieri, S., Khan, A., Khan, R. A., Tien, C. L., Riedl, B., Fraschinic, C., Bouchard, C., Uribe-Calderond, J., Kamal, M. R., Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr. Polym, 90, 1757-1763.
[48] Pereda, M., Amica, G., Rácz, I., Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J. Food Eng, 103, 76-83. 
[49] Stepan, A. M., Ansari, F., Berglund, L., Gatenholm, P. (2014). Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Compos. Sci. Technol, 98, 72-78.
[50] Svagan, A. J., Hedenqvist, M. S., Berglund, L. (2009). Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos. Sci. Technol, 69, 500-506.
[51] Savadekar, N. R., Mhaske, S. T. (2012). Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr. Polym, 89, 146-151.
[52] Santos, T. M., Men de Sá Filho, M. S., Caceres, C. A., Rosa, M. F., Morais, J. P. S., Pinto, A. M., Azeredo, H. M. (2014). Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocoll, 41, 113-118.
[53] Bilbao-Sainz, C., Bras, J., Williams, T., Sénechal, T., Orts, W. (2011). HPMC reinforced with different cellulose nano-particles. Carbohydr. Polym, 86, 1549-1557.
[54] Azeredo, H., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena‐Bustillos, R. J., McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci, 74, 31-35.            
[55] Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zhang, Q. (2014). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll, 43, 427-435.
[56] Ahmad, M., Benjakul, S., Prodpran, T., Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll, 28, 189-199.
[57] Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll, 41, 265-273.
[58] El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr. Polym, 129, 156-167.
[59] George, J., Ramana, K. V., Bawa, A. S. Siddaramaiah. (2011). Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int. J. Biol. Macromol, 48, 50-57.
[60] Lee, J. H., Won, M., Song, K. B. (2015). Physical properties and antimicrobial activities of porcine meat and bone meal protein films containing coriander oil. LWT- Food Sci Techno, 63, 700-705.
[61] Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q. (2015). Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym, 121, 155-162.
[62] Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z. (2014). Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test, 35, 73-79.
[63] Jouki, M., Yazdi, F. T., Mortazavi, S. A., Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll, 36, 9-19.