Niosome- and liposome-loaded calcium alginate microhydrogels for encapsulation and sustainable release of hydrophilic low molecular weight compounds

Document Type : Research Article


1 Ph.D., Food Science and Technology, Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.

2 Associate Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

3 Assistant Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.


Calcium alginate microhydrogels loaded with niosomes and liposomes were used to encapsulate caffeine as a model low molecular weight hydrophilic bioactive compound. To load niosomes and liposomes into alginate hydrogel network and to reduce the size of gel particles the feed solution was electrosprayed into calcium chloride solution. Successive freeze-thaw cycles were employed with a view to slow the release rate of caffeine from niosomes and liposomes. The results showed that niosomes was more efficient in caffeine encapsulation than liposomes. The release profiles confirmed the positive effect of freeze-thaw cycles on sustainable release of caffeine and that the niosome-loaded hydrogels had slower rate of caffeine release. Also, liposomes made of highly pure lecithin revealed more encapsulation efficiency as well as better release profile compared to those of commercial lecithin. Korsmeyer-Peppasmodel was found to appropriately describe the release of caffeine from particles  based on Fickian diffusion. The findings of this study clearly demonstrated that niosome- and liposome- loaded microhydrogels could potentially be used to encapsulate food and pharmaceutical compounds for slow release applications. Moreover, electrospraying technique owing to its capability of producing uniform fine particles could be used as an alternative method for hydrogel preparation from natural polymers.


Main Subjects

[1]         Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An updated review. Int J Pharm Investig., 2(1), 2–11.
[2]         Schaller, M., & Korting, H. C. (1996). Interaction of liposomes with human skin: The role of the stratum corneum. Adv. Drug Deliv. Rev., 18(3), 303–309.
[3]         Gulati, M., Grover, M., Singh, S., & Singh, M. (1998). Lipophilic drug derivatives in liposomes. Int. J. Pharm., 165(2), 129–168.
[4]         Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., & Behera, M. (2010). Niosome : A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 1(4), 374–380.
[5]         Azmin, M. N., Florence,  a T., Handjani-Vila, R. M., Stuart, J. F., Vanlerberghe, G., & Whittaker, J. S. (1985). The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J. Pharm. Pharmacol., 37(4), 237–242.
[6]         Dai, C., Wang, B., Zhao, H., Li, B., & Wang, J. (2006). Preparation and characterization of liposomes-in-alginate (LIA) for protein delivery system. Colloids Surfaces B Biointerfaces., 47(2), 205–210.
[7]         Masalova, O., Kulikouskaya, V., Shutava, T., & Agabekov, V. (2013). Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment. Phys. Procedia., 40(0), 69–75.
[8]         Perez-Moral, N., Gonzalez, M. C., & Parker, R. (2013). Preparation of iron-loaded alginate gel beads and their release characteristics under simulated gastrointestinal conditions. Food Hydrocoll., 31(1), 114–120.
[9]         Stojanovic, R., Belscak-Cvitanovic, A., Manojlovic, V., Komes, D., Nedovic, V., & Bugarski, B. (2012). Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J. Sci. Food Agric., 92(3), 685–696.
[10]       Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Prog. Polym. Sci., 37(1), 106–126.
[11]       Mandal, S., Basu, S. K., & Sa, B. (2009). Sustained Release of a Water-Soluble Drug from Alginate Matrix Tablets Prepared by Wet Granulation Method, 10(4), 1348–1356.
[12]       Al-Mayah, A. M. R. (2012). Simulation of enzyme catalysis in calcium alginate beads. Enzyme Res., 2012.
[13]       Zhang, S., Shang, W., Yang, X., Zhang, S., Zhang, X., & Chen, J. (2013). Immobilization of lipase using alginate hydrogel beads and enzymatic evaluation in hydrolysis of p-nitrophenol butyrate. Bull. Korean Chem. Soc., 34(9), 2741–2746.
[14]       Suksamran, T., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Ruktanonchai, U., & Supaphol, P. (2009). Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J Microencapsul., 26(7), 563–570.
[15]       Bojana, I., Verica, D., Viktor, N., & Branko, B. (2013). Liposome-in-alginate systems for encapsulation of natural antioxidants. In Insid. Symp. (pp. 9–12).
[16]       Strasdat, B., & Bunjes, H. (2013). Incorporation of lipid nanoparticles into calcium alginate beads and characterization of the encapsulated particles by differential scanning calorimetry. Food Hydrocoll., 30(2), 567–575.
[17]       Pjanovic, R., Bo.skovic-Vragolovic, N., Veljkovic-Giga, J., Garic-Grulovic, R., Pejanovic, S., & Bugarski, B. (2010). Diffusion of drugs from hydrogels and liposomes as drug carriers. J. Chem. Technol. Biotechnol., 85(5), 693–698.
[18]       Ditizio, V., Karlgard, C., Lilge, L., Khoury, A. E., Mittelman, M. W., & Dicosmo, F. (1999). Localized drug delivery using crosslinked gelatin gels containing liposomes : Factors influencing liposome stability and drug release.
[19]       Marianecci, C., Carafa, M., di Marzio, L., Rinaldi, F., di Meo, C., Alhaique, F., … Coviello, T. (2011). A new vesicle-loaded hydrogel system suitable for topical applications: Preparation and characterization. J. Pharm. Pharm. Sci., 14(3), 336–346.
[20]       Bock, N., Dargaville, T. R. R., & Woodruff, M. a. A. (2012). Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci., 37(11), 1510–1551.
[21]       Jaworek, A., & Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: An overview. J. Electrostat., 66(3–4), 197–219.
[22]       Rayleigh, Lord. (1878). On the Instability of Jets. Proc. London Math. Soc., 10(June 1873), 4–13.
[23]       Park, H., Kim, P. H., Hwang, T., Kwon, O. J., Park, T. J., Choi, S. W., … Kim, J. H. (2012). Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. Int J Pharm., 427(2), 417–425.
[24]       Lagarde, D., Batéjat, D., Sicard, B., Trocherie, S., Chassard, D., Enslen, M., & Chauffard, F. (2000). Slow-release caffeine: a new response to the effects of a limited sleep deprivation. Sleep., 23(5), 651–661.
[25]       Smith, A. P., Rusted, J. M., Savory, M., Eaton-Williams, P., & Hall, S. R. (1991). The effects of caffeine, impulsivity and time of day on performance, mood and cardiovascular function. J. Psychopharmacol., 5(2), 120–128.
[26]       Tan, D., Zhao, B., Moochhala, S., & Yang, Y.-Y. (2006). Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study. Mater. Sci. Eng. B., 132(1–2), 143–146.
[27]       Bagheri, A., Chu, B. S., & Yaakob, H. (2014). Niosomal drug delivery systems: Formulation, preparation and applications. World Appl. Sci. J., 32(8), 1671–1685.
[28]       Kavrakovski, Z., Popovska, O., Simonovska, J., Kavrakovski, Z., & Rafajlovska, V. (2013). An Overview: Methods for Preparation and Characterization of Liposomes as Drug Delivery Systems. Int. J. Pharm. Phytopharm. Res., 3(2), 13–20.
[29]       Mehregan Nikoo, A., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2016). Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels. J. Microencapsul., 2048(September), 1–28.
[30]       Hadjiioannou, T. P., Christian, G. D., Koupparis, M. A., & Macheras, P. E. (1993). Quantitative Calculations in Pharmaceutical Practice and Research. VCHPublishers.
[31]       Bourne, D. W. A. (2002). Modern Pharmaceutics. New York: Marcel Dekker.
[32]       Higuchi, T. (1963). Mechanism of Sustained- Action Medication. J. Pharm. Sci., 52(12), 1145–1149.
[33]       Jose, S., Fangueiro, J. F., Smitha, J., Cinu, T. a., Chacko,  a. J., Premaletha, K., & Souto, E. B. (2013). Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur. J. Med. Chem., 60, 249–253.
[34]       J.S. Dua, Prof. A. C. Rana, D. a. K. B. (2012). Review Article LIPOSOME : METHODS OF PREPARATION AND APPLICATIONS. Int. J. Pharm. Stud. Res., III(II), 7.
[35]       Woodbury, D. J., Richardson, E. S., Grigg, A. W., Welling, R. D., & Knudson, B. H. (2006). Reducing liposome size with ultrasound: bimodal size distributions. J. Liposome Res., 16(1), 57–80.
[36]       Supaporn, S. (2011). Effect of Freeze-Thawing Process on the Size and Lamellarity of PEG-Lipid Liposomes. Open Colloid Sci. J., 4, 1–8.
[37]       Costa, A. P., Xu, X., & Burgess, D. J. (2014). Freeze-Anneal-Thaw Cycling of Unilamellar Liposomes: Effect on Encapsulation Efficiency. Pharm. Res., 31(1), 97–103.
[38]       Agashe, H., Lagisetty, P., Awasthi, S., & Awasthi, V. (2010). Improved formulation of liposome-encapsulated hemoglobin with an anionic non-phospholipid. Colloids Surfaces B Biointerfaces., 75(2), 573–583.
[39]       Mehregan Nikoo, A., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2016). Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels. J. Microencapsul., 1–28.
[40]       Fadda, A. M., Baroli, B. M., Maccioni, A. M., Sinico, C., Valenti, D., & Alhaique, F. (1998). Phospholipid-detergent systems: Effects of polysorbates on the release of liposomal caffeine. Farmaco., 53(10–11), 650–654.
[41]       Ram, H. N. A., Lachake, P., Kaushik, U., & Shreedhara, C. S. (2010). Formulation and evaluation of floating tablets of liquorice extract. Pharmacognosy Res., 2(5), 304–8.