Optimization and Study of physical properties of liposomes containing nisin

Document Type : Research Article

Authors

1 Graduated M. Sc. Student, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz

2 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz

3 Associate Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz

4 Associate Professor, Pharmaceutical Technology, Department of pharmaceutics, University of medical sciences, Tabriz

Abstract

Nisin has been used as an antimicrobial substance in food and pharmaceutical applications. In its free form, nisin can react with reducing sugars and can non-specifically bind with lipids and proteins and hence lowers its antibacterial activity. To overcome these limitations, using of liposomes has been reported. Due to a number of benefits, e.g. entrapment of water-soluble and lipid-soluble materials as well as biodegradability, liposomes have been widely used in food industries. The main object of the present study was optimization and study of physical properties of liposomes containing nisin. In this research, Response Surface methodology was used for optimization of loposomes produced by heating method. A central composite design consisting of 18 experimental run with three independent variables: phospholipid concentration (0.41-2.14 gr), stirring speed (500-1360 rpm) and processing time (30-90 min) were used and their effects on size of liposome were evaluated. Then, in optimized condition, the various testes such encapsulation efficiency, differential scanning calorimetry and Transition Electron Microscope were carried out. The optimum operating conditions obtained from the quadratic form of RSM model for particle size were phospholipids 2.14 (gr), stirring speed 930 (rpm) and process time 90 (min). For the optimized sample, DSC results showed formation of new structures. Also, encapsulation efficiency of nisin was calculated 30%. In this study liposomes were prepared successfully by heating method, DSC and TEM image analysis confirmed the formation of liposomal structure.

Keywords

Main Subjects


[1] حمیدی،م.؛ موسوی نسب، س.د.؛ احمدی، ن.؛ بساطی، غ.؛ اولاد، غ.؛ سلیمیان، ج.؛ زرگر، م. (1391) سنتز پپتیدهای ضدمیکروبی در باکتری­ها. مجله علمی دانشگاه علوم پزشکی ایلام. دوره بیستم، شماره چهارم، ص170-158.
[2] Chollet, E., Sebti, I., Martial-Gros, A., Degraeve, P. (2008). Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity. Food Cont., 19, 982–989.
[3] Cheikh, Y., Pogori, N., Chen, W., Zhang, H. (2008). Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. Int. J. Food. Microb., 125, 215-22.
[4] Da SilvaMalheiros, P., JonerDaroit, D., Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trend. Food. Sci. Technol., 21, 248-292.
[5] Sobrino-Lopez, A., Martın-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy. J., 18, 329–343.
[6] Bedg, D., Bundale, S., Mashitha, P., Rudra, J., Nashikkar, N., Upadhyay, A. (2011). Immunomodulatory efficacy of nisin a bacterial lantibiotic peptide. Int. J. peptide. Sci., 17, 438-444.
[7] Phikunthong, K., Varissaporn, M., Warin, C. (2011). Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food. Res. Int., 44, 605–612.
[8] زایرزاده، ا.؛ مرتضوی، س.ع.؛ جعفری، م.ر.؛ افشارنژاد، س.؛ طباطبایی یزدی، ف.؛ نصیری محلاتی، م. (1390) بررسی اثر ضدباکتریایی نایسین به دو فرم آزاد و نانوانکپسوله در لیپوزوم بر ماندگاری و کاهش جمعیت لیستریایی پنیر سفید ایرانی فرآپالایش. نشریه پژوهش­های علوم و صنایع غذایی ایران، شماره 3، ص 199 -191.
[9] Keller, B.C. (2001). Liposomes in nutrition. Trend. Food. Sci. Technol., 12, 25–31.
[10] Mozafari, M., Flanagan, J., Matia-merino, L., Awati, A. (2006). Recent trend in lipid-based nanoencapsulation of antioxidants and their role in food, J. Sci. food. Agri., 86, 2038–2045.
[11] Colas, J.C., Wanlong, S., Malleswara, V.S.N., Omri, A., Mozafari, M.R. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron., 38, 841–847.
[12] Laridi, R., Kheadr, E.E., Benech, R.O., Vuillemard, J.C., Lacroix, C., Fliss, L. (2003). Liposome encapsulated nisin Z: Optimization, stability and release during milk fermentation. Int. Dairy. J., 13, 325-336. 
[13] Rasti, B., Jinap, S., Mozafari, M., Yazid, A.M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food. Chm., 135, 2764-2770.
[14] Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, Kh., Jahadi, M., Komeili, R., Mortazavian, A.M.        
     (2013). Stability and catalytic kinetics of protease loaded liposomes. Biochem. Eng. J., 72, 11-17.
 [15] Mozafari, M., Johnson, C., Demetzos, C. (2008). Nanoliposomes and their application in food nanotechnology. Int. J. Liposome. Res., 18, 308–336.
[16] Mozafari, M., Mortazavi, S. (2005). Liposomes: an overview of manufacturing techniques. Int. J. Liposome. Res., 18, 309-327.
[17] Marsanasco, M., Márquez, A.L., Wagner, J.R., Alonso, S., Chiaramoni, N.S. (2011). Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food. Res. Int., 44, 3039-3046.
[18] Watanabe, N., Kamei, S., Ohkubo, A., Yamanaka, M., Ohsawa, S., Makino, S. (1986) Urinary protein as measured with a pyrogallol red-molybdate complex. Manually and in a Hitachi 726 automated analyzer. Clin. Chem., 32, 1551-1554.
19. Pople, P.V., Singh, K.K. (2011) Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur. J. Pharm. Biopharm., 79, 82-94.
[20] Benech, R., Kheadr, E. (2002). Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl. Envi. Micro., 68, 3683-3690.
[21] Wilkinson, M., Kilcawley, K. (2005). Mechanisms of incorporation and release of enzymes into cheese during ripening. Int. Dairy. J., 15, 817-830.
[22] خسروی دارانی، ک.؛ مظفری، م.ر. (1390). نانولیپوزومها، کاربردهای درمانی و صنعتی. انتشارات دانشگاه علوم پزشکی و خدمات بهداشتی و درمانی شهید بهشتی.
[23] Rudra, A., Deepa, R.M., Ghosh, M.K., Ghosh, S., Mukherijee, B. (2010). Doxorubicin-loaded phosphatidylethanolamin econjugated nanoliposomes: in vitro characterization and their accumulation in liver, kidney, and lungs in rats. Int. J. Nano., 5, 811- 823.
[24]Bunjes, H., Unruh, T. (2007). Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug. Deliv. Rev., 59, 379-402.
[25] Chung, P.L.G., Choate D. (1989). Calorimetric studies of the effects of cholesterol on the phase transition of C (18): C (10) phosphatidylcholine. Biophys. J., 55, 551-556.
[26] Hung, C., Levin, I.W. (1983). Effect of lipid chain length inequivalence on the packing characteristics of bilayer assemblies. J. Phys. Chem., 87, 1509-1513.
[27] Davis, P.J., Keough, K.M.W. (1985). Chain arrangements in the gel state and the transition temperature of phosphatidylcholine. Biophy. J., 48, 915-918.