[1] Anukiruthika, T., Moses, J., & Anandharamakrishnan, C. (2020). 3D printing of egg yolk and white with rice flour blends. J. Food Eng., 265, 109691.
[2 Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. J. Food Eng., 215, 13-22.
[3] Shabir, I., Dar, A. H., Manzoor, S., Pandey, V. K., Srivastava, S., Shams, R., . . . Prithviraj, V. (2024). Advancements in Food Printing Technologies and Their Potential Culinary Applications: A Contemporary Exploration. J. Food Process. Preserv., 2024(1), 6621344.
[4] Sun, J., Peng, Z., Zhou, W., Fuh, J. Y., Hong, G. S., & Chiu, A. (2015). A review on 3D printing for customized food fabrication. Procedia Manuf., 1, 308-319.
[5] Niyet, I. Z., Dogan, S., & Cobanoglu, C. (2024). Feeding the future: 3D food printing as a strategic response to labor scarcity. Worldw. Hosp. Tour. Themes, 16(5), 555-565.
[6] Millán, M. G. D. (2024). 3D Food Printing: Technological Advances, Personalization and Future Challenges in the Food Industry. Int. J. Gastron. Food Sci., 37, 100963.
[7] Wang, J., Jiang, Q., Huang, Z., Muhammad, A. H., Gharsallaoui, A., Cai, M., . . . Sun, P. (2024). Rheological and mechanical behavior of soy protein-polysaccharide composite paste for extrusion-based 3D food printing: Effects of type and concentration of polysaccharides. Food Hydrocoll., 153, 109942.
[8] Raiapaksha, R. R. A. K. N., Thilakarathne, B. L. S., Kondarage, Y. G., & De Silva, R. (2021). Design and development of pump based chocolate 3D printer. Paper presented at the Proc. Int. Res. Conf. Smart Comput. Syst. Eng. (SCSE), SCSE 2021.
[9] Singhal, S., Rasane, P., Kaur, S., Garba, U., Bankar, A., Singh, J., & Gupta, N. (2020). 3D food printing: Paving way towards novel foods. An. Acad. Bras. Cienc., 92(3), e20180737.
[10] Agunbiade, A. O., Song, L., Agunbiade, O. J., Ofoedu, C. E., Chacha, J. S., Duguma, H. T., . . . & Guine, R. P. (2022). Potentials of 3D extrusion-based printing in resolving food processing challenges: A perspective review. J. Food Process Eng., 45(4), e13996.
[11] Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L. Y. (2018). Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng., 220, 1-11.
[12] Li, X., Liu, B., Pei, B., Chen, J., Zhou, D., Peng, J., . . . Xu, T. (2020). Inkjet Bioprinting of Biomaterials. Chem. Rev., 120(19), 10793-10833.
[13] Fukui, T. (2018). Nozzle-Free Inkjet Technology Nanoparticle Technology Handbook (pp. 691-694): Elsevier.
[14] Bhat, Z. F., Morton, J. D., Kumar, S., Bhat, H. F., Aadil, R. M., & Bekhit, A. E.-D. A. (2021). 3D printing: Development of animal products and special foods. Trends Food Sci. Technol., 118, 87-105.
[15] Abedini, A., Sohrabvandi, S., Sadighara, P., Hosseini, H., Farhoodi, M., Assadpour, E., . . . & Jafari, S. M. (2024). Personalized nutrition with 3D-printed foods: A systematic review on the impact of different additives. Adv. Colloid Interface Sci., 328, 103181.
[16] Tian, H., Wu, J., Hu, Y., Chen, X., Cai, X., Wen, Y., . . . & Wang, S. (2024). Recent advances on enhancing 3D printing quality of protein-based inks: A review. Compr. Rev. Food Sci. Food Saf., 23(3), e13349.
[17] Wang, T., Lu, S., Hu, X., Xu, B., Bai, C., Ma, T., & Song, Y. (2024). Cellulose nanocrystals-gelatin composite hydrocolloids: Application to controllable responsive deformation during 3D printing. Food Hydrocoll., 151, 109780.
[18] Wedamulla, N. E., Fan, M., Choi, Y. J., & Kim, E. K. (2023). Combined effect of heating temperature and content of pectin on the textural properties, rheology, and 3D printability of potato starch gel. Int. J. Biol. Macromol., 253, 127129.
[19] Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. J. Food Eng., 179, 44-54.
[20] Dick, A., Dong, X., Bhandari, B., & Prakash, S. (2021). The role of hydrocolloids on the 3D printability of meat products. Food Hydrocoll., 119, 106879.
[21] Zhong, Q., Chen, Y., Zhang, X., Yang, G., Jin, W., Peng, D., & Huang, Q. (2024). Correlation between 3D printability and rheological properties of biopolymer fluid: A case study of alginate-based hydrogels. J. Food Eng., 370, 111970.
[22] Kirchmajer, D. M., Gorkin, R., & In Het Panhuis, M. (2015). An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chem. B, 3(20), 4105-4117.
[23] Chen, B., Xu, H., Liu, S., Shi, H., Tuo, X., & Gong, Y. (2024). Processing and performance of 3D-printed gelatin-based edible composite hydrogels. J. Appl. Polym. Sci., 141(30)., e55708.
[24] Yang, G.-h., Han, Y., Tao, Y., Zhu, X.-y., & Xu, X.-l. (2022). Effect of gelatin on the 3 d printing forming stability of chicken meat paste.
Food Sci., 43(12), 51-57.
[25] Chow, C. Y., Thybo, C. D., Sager, V. F., Riantiningtyas, R. R., Bredie, W. L., & Ahrné, L. (2021). Printability, stability and sensory properties of protein-enriched 3D-printed lemon mousse for personalised in-between meals. Food Hydrocoll., 120, 106943.
[26] Bulut, E. G., & Candoğan, K. (2022). Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level. LWT, 154, 112768.
[27] Avallone, P. R., Russo Spena, S., Acierno, S., Esposito, M. G., Sarrica, A., Delmonte, M., . . . Grizzuti, N. (2023). Thermorheological behavior of κ-carrageenan hydrogels modified with xanthan gum. Fluids, 8(4), 119.
[28] Zhu, Y., Di, W., Song, M., Chitrakar, B., & Liu, Z. (2023). Correlating 3D printing performance with sol-gel transition based on thermo-responsive k-carrageenan affected by fructose. J. Food Eng., 340, 111316.
[29] Tian, H., Wang, K., Lan, H., Wang, Y., Hu, Z., & Zhao, L. (2021). Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing. Food Hydrocoll., 113, 106482.
[30] Ko, H. J., Wen, Y., Choi, J. H., Park, B. R., Kim, H. W., & Park, H. J. (2021). Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocoll, 120, 106898.
[31] Mallesham, P., Parveen, S., Pandiselvam, R., Rajkumar, P., & Naik, R. (2024). Characterisation of 3D printing cake batter with xanthan gum and optimization of printing parameters using response surface methodology. Int. J. Gastron. Food Sci., 38, 101026.
[32] Zhao, Y., Li, Y., Liu, Q., Chen, Q., Sun, F., & Kong, B. (2024). Investigating the rheological properties and 3D printability of tomato-starch paste with different levels of xanthan gum. Int. J. Biol. Macromol., 257, 128430.
[33] Bhuiyan, M. H. R., Yeasmen, N., & Ngadi, M. (2025). Effect of food hydrocolloids on 3D meat-analog printing and deep-fat-frying. Food Hydrocoll, 159, 110716.
[34] Εkonomou, S. Ι., Hadnađev, M., Gioxari, A., Abosede, O. R., Soe, S., & Stratakos, A. C. (2024). Advancing dysphagia-oriented multi-ingredient meal development: Optimising hydrocolloid incorporation in 3D printed nutritious meals. Food Hydrocoll, 147, 109300.
[35] Cai, Y., Wang, J., Xiao, S., Zhu, J., Yu, J., Li, L., & Liu, Y. (2023). The interaction study of soluble pectin fiber and surimi protein network from silver carp (Hypophthalmichthys molitrix) based on a new prediction model. Food Chem., 403, 134429.
[36] Vancauwenberghe, V., Mbong, V. B. M., Vanstreels, E., Verboven, P., Lammertyn, J., & Nicolai, B. (2019). 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. J. Food Eng., 263, 454-464.
[37] Calton, A., Lille, M., & Sozer, N. (2023). 3-D printed meat alternatives based on pea and single cell proteins and hydrocolloids: Effect of paste formulation on process-induced fibre alignment and structural and textural properties. Food Res. Int., 174, 113633.
[38] Feng, C., Zhang, M., Bhandari, B., Wang, Y., & Wang, B. (2021). Improvement of 3D printing properties of rose‐sodium alginate heterogeneous gel by adjusting rose material. J. Food Process Eng., 44(1), e13583.
[39] Ma, C., Yan, J., Li, W., Wang, Y., McClements, D. J., Liu, X., & Liu, F. (2024). Enhanced printability of food-grade edible inks: Emulsions formulated with modified pea protein and sodium alginate. Food Hydrocoll, 152, 109946.