[1] Duca A, Sturza A, Moacă E-A, Negrea M, Lalescu V-D, Lungeanu D, et al. (2019). Identification of resveratrol as bioactive compound of propolis from western Romania and characterization of phenolic profile and antioxidant activity of ethanolic extracts. Molecules, 24(18), 3368.
[2] Bogdanov, S. (2019). Harmonised methods of the International Honey Commission. Retrieved November 1, 2019, from http://www.ihc-platform.net
[3] AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.). Rockville, MD: Author. ISBN 0935584544.
[4] Maione, C., Barbosa, F., Jr., & Barbosa, R. M. (2019). Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Computers and Electronics in Agriculture, 157, 436–446.
[5] Se, K. W., Wahab, R. A., Yaacob, S. N. S., & Ghoshal, S. K. (2019). Detection techniques for adulterants in honey: Challenges and recent trends.
J. Food Compos. Anal, 80, 16–32.
https://doi.org/10.1016/j.jfca.2019.04.001
[6] Das C, Chakraborty S, Acharya K, Bera NK, Chattopadhyay D, Karmakar A, et al. (2017). FT-MIR supported electrical impedance spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327–334.
[7] Brereton RG. (2000). Introduction to multivariate calibration in analytical chemistry: Electronic Supplementary Information available. Analyst, 125(11), 2125–2154.
[8] Aliaño-González MJ, Ferreiro-González M, Espada-Bellido E, Palma M, & Barbero GF. 2019). A screening method based on visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta, 203, 235–241.
[9] Corvucci F, Nobili L, Melucci D, & Grillenzoni F-V. (2015). The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem., 169, 297–304.
[10] Oroian, M., & Ropciuc, S. (2018). Botanical authentication of honeys based on Raman spectra. J. Food Meas. Charact., 12(1), 545–554.
[11] Frausto-Reyes C, Casillas-Peñuelas R, Quintanar-Stephano J, Macías-López E, Bujdud-Pérez J, & Medina-Ramírez, I. (2017). Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta A Mol. Biomol. Spectrosc., 178, 212–217.
[12] Jandrić Z, Haughey S, Frew R, McComb K, Galvin-King P, & Cannavan, A. (2015). Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem., 189, 52–59.
[13] Oroian M, Ropciuc S, & Paduret, S. (2018). Honey adulteration detection using Raman spectroscopy. Food Anal. Methods, 11(4), 959–968.
[14] Anjos O, Santos AJ, Paixão V, & Estevinho, L. M. (2018). Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta, 178, 43–48.
[15] Özbalci B, Boyaci İH, Topcu A, Kadılar C, & Tamer, U. (2013). Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem., 136(3–4), 1444–1452.
[16] Tahir HE, Xiaobo Z, Zhihua L, Jiyong S, Zhai X, Wang S, et al. (2017). Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem., 226, 202–211.
[17] Li S, Shan Y, Zhu X, Zhang X, & Ling, G. (2012). Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy.
J. Food Compos. Anal., 28, 69–74.
https://doi.org/10.1016/j.jfca.2012.07.006
[18] Anguebes-Franseschi, F., Abatal, M., Pat, L., Flores, A., Córdova Quiroz, A. V., Ramírez-Elias, M. A., … & Bassam, A. (2019). Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from Campeche, Mexico. Molecules, 24(22), 4091.
[19] Batsoulis, A. N., Siatis, N. G., Kimbaris, A. C., Alissandrakis, E. K., Pappas, C. S., & Tarantilis, P. A., et al. (2005). FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey. J. Agric. Food Chem., 53(2), 207–210.
[20] Craig, A. P., Franca, A. S., & Irudayaraj, J. (2013). Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol., 4, 369–380.
[21] Iranian National Standardization Organization (INSO). (2020). Honey—Specifications and test methods. Tehran, Iran: Author.
[22] Li, S., Shan, Y., Zhu, X., Zhang, X., & Ling, G. (2012). Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy.
J. Food Compos. Anal., 28(1), 69–74.
https://doi.org/10.1016/j.jfca.2012.07.006
[23] White, J. W., Jr. (1969). Moisture in honey: Review of chemical and physical methods. J. Assoc. Off. Anal. Chem., 52(4), 729–737.
[24] Kek, S. P., Chin, N. L., Yusof, Y. A., Tan, S. W., & Chua, L. S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop., 20(sup3), S2723–S2738.
[25] Belay, A., Solomon, W., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia.
Food Chem., 141(4), 3386–3392.
https://doi.org/10.1016/j.foodchem.2013.06.035
[26] Wu, X., Xu, B., Ma, R., Niu, Y., Gao, S., Liu, H., et al. (2022). Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc., 274, 121133.
[28] Hu, S., Li, H., Chen, C., Chen, C., Zhao, D., Dong, B., et al. (2022). Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey.
Sci. Rep., 12(1), 3456.
https://doi.org/10.1038/s41598-022-07391-4
[29] Stöbener, A., Naefken, U., Kleber, J., & Liese, A. (2019). Determination of trace amounts with ATR FTIR spectroscopy and chemometrics: 5-(Hydroxymethyl)furfural in honey.
Talanta, 204, 1–5.
https://doi.org/10.1016/j.talanta.2019.06.004
[30] David, M., Berghian-Grosan, C., & Magdas, D. A. (2025). Honey differentiation using infrared and Raman spectroscopy analysis and the employment of machine-learning-based authentication models. Foods, 14(6), 1032.
[31] Song, X., She, S., Xin, M., Chen, L., Li, Y., Vander Heyden, Y., et al. (2020). Detection of adulteration in Chinese monofloral honey using ¹H nuclear magnetic resonance and chemometrics. J. Food Compos. Anal., 86, 103390.
[32] Magdas, D. A., Guyon, F., Berghian-Grosan, C., & Molnár, C. M. (2021). Challenges and a step forward in honey classification based on Raman spectroscopy.
Food Control, 123, 107769.
https://doi.org/10.1016/j.foodcont.2020.107769