Investigation of physicochemical, rheological and sensory characterization of caramel produced from fructose

Document Type : Research Article

Authors

1 Department of Food Science and Technology, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Islamic Azad university of Qazvin

3 Zar Grain Refinery, Farhikhtegan Zarnam Industrial & Research Group, Karaj, Iran

Abstract

Caramel color is among the most widely used additives in the food industry. This study aimed to produce caramel from fructose and evaluate its physicochemical, rheological, and sensory properties. Fructose-based caramel was prepared using four different methods at 100°C (Method 1: 84.06% fructose + 7.10% ammonia + 8.84% sulfuric acid, 90 min, Method 2: 79.01% fructose + 9.35% ammonia + 11.63% sulfuric acid, 90 min, Method 3: 91.85% fructose + 3.34% ammonia + 4.83% sulfuric acid, 4 h and Method 4: 88.93% fructose + 4.53% ammonia + 6.54% sulfuric acid, 4 h). The samples were analyzed for browning index, reducing power, hydroxymethylfurfural content, total phenolic compounds, antioxidant capacity, color, viscosity, and sensory characteristics. The results indicated that Method 1 produced superior aroma, color, and chewiness, while Method 2 showed better viscosity, hue angle, and sweetness intensity. The highest antioxidant activity was observed in the control sample (70.48%), and the lowest in the sample from Method 4 (29.04%). The highest total phenolic content was also found in the control (1276.7 mg gallic acid/g), followed by the caramel from Method 1 (1151.9 mg gallic acid/g). The lowest phenolic content was recorded in the sample from Method 2. In addition, HPLC analysis identified sinapic acid (1262.9 mg/mL), protocatechuic acid (926.1 mg/mL), catechin (501.6 mg/mL), and ellagic acid (220.09 mg/mL) as the main phenolic compounds in the caramel samples.

Graphical Abstract

Investigation of physicochemical, rheological and sensory characterization of caramel produced from fructose

Highlights

  • Fructose-based caramel was produced using four different formulations and comprehensively analyzed for physicochemical, rheological, and sensory characteristics.
  • Total phenolic content and antioxidant capacity were significantly influenced by formulation composition and heating duration.
  • Key phenolic compounds identified via HPLC included sinapic acid, protocatechuic acid, catechin, and ellagic acid, indicating promising functional potential of the caramel.

Keywords

Main Subjects


[1] Bagheri, H., Kashaninejad, M., Ziaee Far, A., & Alami, M. (2016). Evaluation of color parameters, moisture content, and energy consumption during peanut roasting using hot air. Innov. Food Technol., 3(11), 59–71. [In Persian]. DOI: 10.22104/JIFT.2016.290
[2] Keramt, J., & Malek, S. (2001). Separation of caramel color from sugar beet molasses and investigation of its properties and applications in the food industry. Agric. Sci. Nat. Resour., 5(1). [In Persian]
[3] Sabaghzadeh, R., Elhami Rad, A., & Armin, M. (2020). Study of the effect of caramelization conditions and type of sugar on browning intensity, reducing properties, and antioxidant characteristics of produced caramel. J. Innov. Food Sci. Technol., 12(3), 1–9. [In Persian] DOI:  10.30495/jfst.2020.674095
[4] Shoberi, N.S., (2010).The role of pH, temperature and catalyst type in caramel manufacturing process. UMP.
[5] Dai, Y., et al. (2021). Preparation and characterization of modified caramel with binary carboxylic acids. in IOP Conference Series: Earth and Environmental Science.. IOP Publishing.
[6] Elvers, B. (1991). Ullmann's encyclopedia of industrial chemistry. Vol. 17., Verlag Chemie Hoboken, NJ.
[7]Al-Abid, M., Al-Shoaily, K., Al-Amry, M., & Al-Rawahy, F. (2007). Preparation of caramel colour from dates. Acta Hortic., 736. DOI: 10.17660/ActaHortic.2007.736.53
 [8] Laroque, D., Inisan, C., Berger, C., Vouland, E., Dufossé, L., Guérard, F.  (2008). Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem., 111(4), p. 1032-1042. DOI: 10.1016/j.foodchem.2008.05.033
 [9]Limsuwanmanee, J., Chaijan, M., Manurakchinakorn, S., Benjakul, S., Panpipat, W., Klomklao, S.  (2014). Antioxidant activity of Maillard reaction products derived from stingray (Himantura signifier) non-protein nitrogenous fraction and sugar model systems. LWT, 57(2), p. 718-724. DOI: 10.1016/j.lwt.2014.01.042
[10]Dogan, M. & Toker, O. (2015). Hydroxymethylfurfural content and physicochemical properties of the caramel samples enriched with different dietary fibres. Qual. Assur. Saf. Crops Foods, 7(3), p. 277-285, DOI: 10.3920/QAS2013.0284
[11]Guan, Y.G., Yu, P.,  Yu, Sh.,  Xu, X.,  Shi, W.,  Sun, W. (2011). Effects of pressure on the glucose–ammonium sulphite caramel solutions. Food Chem., 127, p. 596-601. DOI: 10.1016/j.foodchem.2011.01.049
[12]Karseno, E., T. Yanto, R. Setyowati, and P. Haryanti (2018). Effect of pH and temperature on browning intensity of coconut sugar and its antioxidant activity. Food Res., 2(1), p. 32-38. DOI: 10.26656/fr.2017.2(1).175
[13] Kokeb, A., Mamo, S., Gabbiye, N., & Assefa, A. (2015). Synthesis and characterization of caramel from simple sugar for brewing color application. Int. J. Basic Appl. Sci., 2(1), 48–55.
[14] Kocadağlı, T., & Gökmen, V. (2016). Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Food Chem., 211, 892–902. DOI: 10.1016/j.foodchem.2016.05.150
[15] Benjakul, S., Visessanguan, W., Phongkanpai, V., & Tanaka, M. (2005). Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chem., 90(1–2), 231–239. DOI: 10.1016/j.foodchem.2004.03.045
[16] Rufián-Henares, J., & Pastoriza, S. (2016). Browning: Non-enzymatic browning.
[17] Eskin, N. M., & Shahidi, F. (2012). Biochemistry of foods (3rd ed.). Academic Press.
[18] Jain, D., Wang, J., Liu, F., Tang, J., Bohnet, S. (2017). Application of non-enzymatic browning of fructose for heating pattern determination in microwave assisted thermal pasteurization system. J. Food Eng., 210, 27–34. DOI: 10.1016/j.jfoodeng.2017.04.014
[19] Hwang, I. G., Kim, H. Y., Woo, K., Lee, J., Jeong, H. S. (2011). Biological activities of Maillard reaction products (MRPs) in a sugar–amino acid model system. Food Chem., 126(1), 221–227. DOI: 10.1016/j.foodchem.2010.10.103
[20] Lertittikul, W., Benjakul, S., & Tanaka, M. (2007). Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chem., 100(2), 669–677. DOI: 10.1016/j.foodchem.2005.09.085
[21] Coca, M., Teresa Garcı, M., González, G.,  Peña, M., Garcı, J.A. (2004). Study of coloured components formed in sug ar beet processing. Food Chem., 86(3), 421–433. DOI: 10.1016/j.foodchem.2003.09.017
 [22] Hu, S., Yin, J., Nie, Sh., Wang, J., Glyn, O.Ph., Xie, M., Cui, S. W. (2016). In vitro evaluation of the antioxidant activities of carbohydrates. Bioact. Carbohydr. Diet. Fibre, 7(2), 19–27. DOI: 10.1016/j.bcdf.2016.04.001
 [23] Lee, G., & Lee, C. (1997). Inhibitory effect of caramelisation products on enzymic browning. Food Chem., 60(2), 231–235. DOI: 10.1016/S0308-8146(96)00325-1
[24] Vollmuth, T. A. (2018). Caramel color safety–an update. Food Chem. Toxicol., 111, 578–596. DOI: 10.1016/j.fct.2017.12.004
 [26]Brudzynski, K., & Miotto, D. (2011). Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem., 127(3), 1023–1030. DOI: 10.1016/j.foodchem.2011.01.075
[27] El-Ghorab, A. H., Ashraf, I., Muhammad Anjum, F., Shaaban, H., El-massry, Kh., Farouk, A. (2010). The effect of pH on flavor formation and antioxidant activity of amino acid and sugars interaction products. J. Appl. Sci. Res., 5(2), 131–139.
[28] Rahardjo, M., Sihombing, M., & Anggraeni, M. (2020). Color development and antioxidant activity in honey caramel. In IOP Conf. Ser.: Earth Environ. Sci.. IOP Publishing. DOI: 10.1088/1755-1315/443/1/012041
[29] Echavarría, A., Pagán, J., & Ibarz, A. (2013). Antioxidant activity of the melanoidin fractions formed from D-glucose and D-fructose with L-asparagine in the Maillard reaction. Sci. Agropecu., 4(1), 45–54. DOI: 10.17268/sci.agropecu.2013.01.05
[30] Tsai, P.-J., Yu, T., Chen, Sh., Liu, Ch., Sun, Y. (2009). Interactive role of color and antioxidant capacity in caramels. Food Res. Int., 42(3), 380–386. DOI: 10.1016/j.foodres.2009.01.006
[31] Brenna, O. V., Ceppi, E. L., & Giovanelli, G. (2009). Antioxidant capacity of some caramel-containing soft drinks. Food Chem., 115(1), 119–123. DOI: 10.1016/j.foodchem.2008.11.059
[32] Chawla, S., Chander, R., & Sharma, A. (2009). Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins. Food Chem., 116(1), 122–128. DOI: 10.1016/j.foodchem.2009.01.097
[33] Phongkanpai, V., Benjakul, S., & Tanaka, M. (2006). Effect of pH on antioxidative activity and other characteristics of caramelization products. J. Food Biochem., 30(2), 174–186. DOI: 10.1111/j.1745-4514.2006.00053.x
[34] Payet, B., Shum Cheong Sing, A., & Smadja, J. (2005). Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem., 53(26), 10074–10079. DOI: 10.1021/jf0517703
[35] Amin, N. A. M., Mustapha, W. A. W., Maskat, M. Y., & Wai, H. C. (2010). Antioxidative activities of palm sugar-like flavouring. Open Food Sci. J., 4(1), 23–29. DOI: 10.2174/1874256401004010023
[36] Woo, K. S., Kim, H., Hwang, I., Lee, S., Jeong, H. (2015). Characteristics of the thermal degradation of glucose and maltose solutions. Prev. Nutr. Food Sci., 20(2), 102–108. DOI: 10.3746/pnf.2015.20.2.102
[37] Kocadağlı, T., & Gökmen, V. (2019). Caramelization in foods: A food quality and safety perspective.
[38] Chen, H., & Gu, Z. (2014). Effect of ascorbic acid on the properties of ammonia caramel colorant additives and acrylamide formation. J. Food Sci., 79(9), C1678–C1682. DOI: 10.1111/1750-3841.12560
[39] Linner, R. (1970). Caramel color: A new method of determining its color hue and tinctorial power. In Proc. Soc. Soft Drink Technol. Annu. Meet.
[40] El Hosry, L., Elias, V., Chamoun, V., Halawi, M., Cayot, P., Nehme, A., & Bou-Maroun, E. (2025). Maillard reaction: Mechanism, influencing parameters, advantages, disadvantages, and food industrial applications: A review. Foods, 14, 1881. DOI: 10.3390/foods14111881
[41] Schab, D., Zahn, S., & Rohm, H. (2021). Development of a caramel-based viscoelastic reference material for cutting tests at different rates. Mater., 14, 3798. DOI: 10.3390/ma14143798
[42] Luna, M. P., & Aguilera, J. M. (2014). Kinetics of colour development of molten glucose, fructose and sucrose at high temperatures. Food Biophys., 9(1), 61–68. DOI: 10.1007/s11483-013-9317-0
[43] Barra, G. (2004). The rheology of caramel. Doctoral dissertation, University of Nottingham.
[44] Barra, G., & Mitchell, J. R. (2013). The rheology of caramel. Curr. Nutr. Food Sci., 9(1), 52–61. DOI: 10.2174/1573401311309010005
Volume 12, Issue 4
July 2025
Pages 395-414
  • Receive Date: 09 July 2025
  • Revise Date: 11 August 2025
  • Accept Date: 11 August 2025
  • First Publish Date: 11 August 2025
  • Publish Date: 23 July 2025