[1] Ozturk, B., Winterburn, J., & Gonzalez-Miquel, M. (2019). Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochemical Engineering Journal, 151, 107298. doi:10.1016/j.bej.2019.107298
[2] Panić, M., Stojković, M. R., Kraljić, K., Škevin, D., Redovniković, I. R., Srček, V. G., & Radošević, K. (2019). Ready-to-use green polyphenolic extracts from food by-products. Food Chemistry, 283, 628–636. doi:10.1016/j.foodchem.2019.01.061
[3] Mahato, N., Sharma, K., Sinha, M., Dhyani, A., Pathak, B., Jang, H., Cho, S. (2021). Biotransformation of citrus Waste-I: production of biofuel and valuable compounds by fermentation. Processes, 9(2), 220. doi:10.3390/pr9020220
[4] Murador, D. C., Salafia, F., Zoccali, M., Martins, P. L. G., Ferreira, A. G., Dugo, P., Giuffrida, D. (2019). Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants, 8(12), 613. doi:10.3390/antiox8120613
[5] Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. (2015). Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24, 72–79. doi:10.1016/j.ultsonch.2014.11.015
[6] Jokić, S., Molnar, M., Cikoš, A., Jakovljević, M., Šafranko, S., & Jerković, I. (2019). Separation of selected bioactive compounds from orange peel using the sequence of supercritical CO 2 extraction and ultrasound solvent extraction: optimization of limonene and hesperidin content. Separation Science and Technology, 55(15), 2799–2811. doi:10.1080/01496395.2019.1647245
[7] Obafaye, R. O., & Omoba, O. S. (2018). Orange peel flour: A potential source of antioxidant and dietary fiber in pearl-millet biscuit. Journal of Food Biochemistry, 42(4), e12523. doi:10.1111/jfbc.12523
[8] Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531. doi:10.1111/1541-4337.12330
[9] Saleem, M., & Saeed, M. T. (2020). Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University - Science, 32(1), 805–810. doi:10.1016/j.jksus.2019.02.013
[10] Viñas-Ospino, A., Panić, M., Bagović, M., Radošević, K., Esteve, M., & Redovniković, I. R. (2023). Green approach to extract bioactive compounds from orange peel employing hydrophilic and hydrophobic deep eutectic solvents. Sustainable Chemistry and Pharmacy, 31, 100942. doi:10.1016/j.scp.2022.100942
[11] Ravetti, S., Garro, A. G., Gaitán, A., Murature, M., Galiano, M., Brignone, S. G., & Palma, S. D. (2023). Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications. Pharmaceutics, 15(3), 863. doi:10.3390/pharmaceutics15030863
[12] Bubalo, M. C., Vidović, S., Redovniković, I. R., & Jokić, S. (2018). New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing, 109, 52–73. doi:10.1016/j.fbp.2018.03.001
[13] Csuti, A., Sik, B., & Ajtony, Z. (2022). Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography – a Review. Critical Reviews in Analytical Chemistry, 1–14. doi:10.1080/10408347.2022.2082241
[14] Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs.
Ultrasonics Sonochemistry, 8(3), 303–313.
doi:10.1016/s1350-4177(01)00071-2
[15] Munekata, P. E., Alcántara, C., Žugčić, T., Abdelkebir, R., Collado, M. C., García-Pérez, J. V., Lorenzo, J. M. (2020). Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Research International, 134, 109242. doi:10.1016/j.foodres.2020.109242
[16] Setyani, W., Murwanti, R., Sulaiman, T. N. S., & Hertiani, T. (2023). Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro. Plants, 12(13), 2455. doi:10.3390/plants12132455
[17] Melgar, B., Dias, M. I., Barros, L., Ferreira, I. C., Rodriguez-Lopez, A. D., & Garcia-Castello, E. M. (2019). Ultrasound and microwave assisted extraction of opuntia fruit peels biocompounds: Optimization and comparison using RSM-CCD. Molecules, 24(19), 3618. doi:10.3390/molecules24193618
[18] Dalmau, E., Rosselló, C., Eim, V., Ratti, C., & Simal, S. (2020). Ultrasound-Assisted Aqueous Extraction of Biocompounds from Orange Byproduct: Experimental Kinetics and Modeling. Antioxidants, 9(4), 352. doi:10.3390/antiox9040352
[19] González-Centeno, M. R., Comas-Serra, F., Femenia, A., Rosselló, C., & Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22, 506–514. doi:10.1016/j.ultsonch.2014.05.027
[20] Stabrauskiene, J., Marksa, M., Ivanauskas, L., & Bernatoniene, J. (2022). Optimization of Naringin and Naringenin Extraction from Citrus × paradisi L. Using Hydrolysis and Excipients as Adsorbent. Pharmaceutics, 14(5), 890. doi:10.3390/pharmaceutics14050890
[21] Chemat, F., Vian, M. A., Fabiano-Tixier, A., Nutrizio, M., Jambrak, A. R., Munekata, P., Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22(8), 2325–2353. doi:10.1039/c9gc03878g
[22] Kanmani, P., Dhivya, E., Aravind, J., & Kumaresan, K. (2014). Extraction and Analysis of Pectin from Citrus Peels: Augmenting the Yield from Citrus limon Using Statistical Experimental Design. Iranica Journal of Energy and Environment, 5(3). doi:10.5829/idosi.ijee.2014.05.03.10
[23] Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323–330. doi:10.1016/j.seppur.2013.10.040
[24] Chakraborty, S., Uppaluri, R., & Das, C. (2020). Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing, 120, 114–122. doi:10.1016/j.fbp.2020.01.003
[25] Renu, R., Waghray, K., & Reddy, P. D. S. (2022). Standardization and modelling of storage conditions for Hydro-Cooling of mango (Mangifera indica) using response surface methodology. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-1465013/v1
[26] Sawalha, S. M., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2009). Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chemistry, 116(2), 567–574. https://doi.org/10.1016/j.foodchem.2009.03.003
[27] Luengo, E., Álvarez, I., & Raso, J. (2012). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84. https://doi.org/10.1016/j.ifset.2012.10.005
[28] Pereira, R. M. S., López, B. G., Diniz, S. N., Antunes, A. A., Garcia, D. M., Oliveira, C. R., & Marcucci, M. C. (2017). Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agricultural Sciences, 08(07), 631–644. https://doi.org/10.4236/as.2017.87048
[29] Yalim, S., Özdemir, Y., & Ekiz, H. (2020). Naringin in Turkish orange juices and its reduction by Naringinase. Journal of Food and Drug Analysis, 12(3). https://doi.org/10.38212/2224-6614.2642