[1] Peter, K.V., (Ed.). (2012). Handbook of herbs and spices, Elsevier.
[2] Aggarwal, B.B., & Kunnumakkara, A.B. (2009). Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine; World Scientific: Singapore.
[3] Roman, S., Sanchez-Siles, L.M., & Siegrist, M. (2017). The importance of food naturalness for consumers. Results of a systematic review.
Trends In F Sci & Techno, 67, 44-57.
https://doi.org/10.1016/j.tifs.2017.06.010.
[4] Omidbeigi, R., (2014). production and processing of medicinal plants, Astan Quds Razavi Publications] In Persian]
[5] Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., & Consoli, G.M.L. (2018). Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation.
F. Chemi. 269: 286-292.
http://doi.org/10.1016/j.foodchem.2018.06.140.
[6] Rawat, S. (2015). Food Spoilage: Microorganisms and their prevention. Asian J of Plant Sci & Research 5: 47-56.
[7] Gliszczyńska-Świgło, A. & Chmielewski, J. (2017). Electronic nose as a tool for monitoring the authenticity of food, Food Analytical Methods, 10(6), 1800-1816. DOI 10.1007/s12161-016-0739-4.
[9] Li, Ch., Xu, F., Cao, Ch., Shang, M.Y., Zhang, C.Y., Yu, J., Liu, G.X., Wang, X. & Cai, SH.C. (2013). Comparative analysis of two species of Asari Radix et Rhizoma by electronic nose, headspace GC–MS and chemometrics,
J of Pharma &Bio Analysis, 85, 231-238.
https://doi.org/10.1016/j.jpba.2013.07.034
[10] Shafiqul Islam, A.K.M., Ismail, Z., Saad, B., Othman, A.R., Ahmad, M.N. & Shakaff, A.Y.Md. (2006). Correlation studies between electronic nose response and headspace volatiles of Eurycoma longifolia extracts.
Sensors and Actuators B, 120, 245-251.
https://doi.org/10.1016/j.snb.2006.02.020
[11] Temiz, H., & Ulas, B. (2021). A Review of recent studies employing hyperspectral imaging for the determination of food adulteration.
Photochem. 1, 125-146. https://doi.org/
10.3390/photochem1020008.
[12] Ciftci, M., Simsek, U.G., Yuce, A., Yilmaz, O., & Dalkilic, B. (2010). Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Veterinaria Brno. 79(1), 33-40. https://doi.org/10.2754/avb201079010033.
[13] Dhanya, K., Kizhakkayil, J., Syamkumar, S., & Sasikumar, B. (2007). Isolation and amplification of genomic DNA from recalcitrant dried berries of black pepper (Piper nigrum L.). A medicinal spice. 7: 165-168. https://doi.org/10.1007/s12033-007-0044-y
[14] Azarmdel, H., Jahanbakhshi, A., Mohtasebi,S,S., & Mu˜noz, A,R. (2020). Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM),
Postharvest Biol. Technol. 166, 111201.
https://doi.org/10.1016/j.postharvbio.2020.111201
[15] Gowen, A.A., O’Donnell, C.P., Cullen, P.J., Downey, G., & Frias, J.M. (2017). Hyperspectral imaging–an emerging process analytical tool for food quality and safety control.
Trends Food Sci. Technol. 18, 590–598.
https://doi.org/10.1016/j.tifs.2007.06.001
[16] Soni, A., Dixit, Y., Reis, M.M., & Brightwell, G. (2022). Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr. Rev
. Food Sci. Food Saf. 21, 3717–3745.
https://doi.org/10.1111/1541-4337.12983
[17] Wu, X.Y., Zhu, S.P., Huang, H., & Xu, D. (2017). Quantitative identification of adulterated sichuan pepper powder by near-infrared spectroscopy coupled with chemometrics.
J. Food Qual. 5019816.
https://doi.org/10.1155/2017/5019816
[18] Khan, M.H., Saleem, Z., Ahmad, M., Sohaib, A., Ayaz, H., & Mazzara, M. (2020). Hyperspectral imaging for color adulteration detection in red chili.
Appl. Sci. 10, 5955.
https://doi.org/10.3390/app10175955
[19] Kumar, A., Bharti, V., Kumar, V., Kumar, U., & Meena, P.D. (2016). Hyperspectral imaging: A potential tool for monitoring crop infestation, crop yield and macronutrient analysis, with special emphasis to Oilseed Brassica. Journal of Oilseed Brassica, 7(2), 113-12.
[20] Vejarano, R., Siche, R., & Tesfaye, w. (2017). Evaluation of biological contaminants in foods by hyperspectral imaging: A review.
International Journal of Food Properties. 20(2), 1264-1297.
https://doi.org/10.1080/10942912.2017.1338729
[21] Lu, B., Dao, P.D., Liu, J., He, Y., & Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture.
Remote Sensing, 12, 2659.
https://doi.org/10.3390/rs12162659
[22] Kheiralipour, K., Singh, C. B., & Jayas, D. S. (2023). Applications of Visible, Thermal, and Hyperspectral Imaging Techniques in the Assessment of Fruits and Vegetables. In Image Processing: Advances in Applications and Research. Edited by Jayas, D.S. New York, USA: Nova Science Publishers.
[23] Singh, C.B. (2009). Detection of insect and fungal damage and incidence of sprouting in stored wheat using near-infrared hyperspectral and digital color imaging. Ph.D. Dissertation. University of Manitoba, Winnipeg, Canada.
[24] Gomez-Sanchis, J., Gomez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Molto, E., & Blasco, J. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins.
J of Food Eng, 89, 80-86.
https://doi.org/10.1016/j.jfoodeng.2008.04.009
[26] Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D. S. and Siliveru K. (2015). Detection of fungal infection in pistachio kernel by long-wave near infrared hyperspectral imaging technique.
Quality Assurance and Safety of Crops & Foods., 8(1): 129-135.
https://doi.org/10.3920/QAS2015.0606.
[27] Kheiralipour, K. (2012). Implementation and construction of a system for detecting fungal infection in pistachio kernel based on thermal imaging (TI) and image processing technology. Ph.D. Dissertation, University of Tehran, Karaj, Iran. [In persion]
[29] Azadnia, R., & Kheiralipour, K. (2021). Recognition of leaves of different medicinal plant species using a robust image processing algorithm and artificial neural networks classifier.
Journal of Applied Research on Medicinal and Aromatic Plants. 100327.
https://doi.org/10.1016/j.jarmap.2021.100327.
[31] Khazaee, Y., Kheiralipour, K., Hosainpour, A., Javadikia, H., & Paliwal, J. (2022).
Development of a novel image analysis and classification algorithms to separate tubers from clods and stones.
Potato Research, 65(1): 1-22. https://doi.org/10.1007/s11540-021-09528-7.
[33] Farokhzad, S., Modaress Motlagh, A., Ahmadimoghadam, P., Jalali Honarmand, S., & Khaieralipour, K. (2017). Fungal infection in potato tuber using thermal imaging.
Iranian J of Bio Eng. 48(3):243-253.
10.22059/ijbse.2017.212753.664821
[35] Moosavian, A. (2012). Fault Diagnosis and Classification of Journal Bearings by Using Support Vector Machine, M. Sc. dissertation, University of Tehran, Karaj.
[36] Kheiralipour, K., & Pormah, A. (2017). Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks.
J. of Food. Pro. Eng. 40(6), e12558.
https://doi.org/10.1111/jfpe.12558.
[37] Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D.S., Siliveru, K., & Malihipour, A. (2021).
Processing the hyperspectral images for detecting infection of pistachio kernel by R5 and KK11 isolates of Aspergillus flavus fungus.
Iran. J. Biosyst. Eng 52 (1), 13-25. https://dx.doi.org/10.22059/ijbse.2020.299712.665293.
[38] Mousavi, S., A. Abbaszadeh Tehrani, N. & Jan Alipour, M. (2019). Estimation of the area under dryland wheat cultivation using Sentinel-2 satellite images.
Envir Rese & Tech, 2019, 5 (7), 77-90.
https://doi.org/10.3390/rs12061024.
[39] Nargesi, M. H. (2024). Detection of fraud in black pepper, red pepper, and cinnamon powder using hyperspectral imaging and artificial neural network. Ph.D. Dissertation, University of Bu-Ali Sina University, Hamedan, Iran.
[40] Nobari Moghaddam, H., Tamiji, Z., Akbari Lakeh, M., Khoshayand, M. R., & Haji Mahmoodi, M. (2022). Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics.
J. of F. Compo. & Anal, 107 (December 2021).
https://doi.org/10.1016/j.jfca.2021.104343.
[41] Malavi, D., Nikkhah, A., Alighaleh, P., Einafshar, S., Raes, K., & Haute, S. V. (2024). Detection of saffron adulteration with
Crocus sativus style using NIR-hyperspectral imaging and chemometrics.
Food Control. 157, 110189.
https://doi.org/10.1016/j.foodcont.2023.110189.
[42] Deng, S., Xu, Y., Li, L., Li, X., & He, Y. (2013). A feature-selection algorithm based on Support Vector Machine-Multiclass for hyperspectral visible spectral analysis. J. of Food Eng, 119(1), 159–166. https://doi.org/10.1016/j. jfoodeng.2013.05.024.
[43] Chen, Q., Zhao, J., Fang, C. H., & Wang, D. (2007). Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(3), 568–574. https://doi.org/10.1016/j. saa.2006.03.038.
[44] Zeng, T., Matsunaga, T., & Shirai, T. (2019). Generalization of parameter selection of SVM and LS-SVM for regression.
Machine Learning and Knowledge Extraction, 1(2), 745–755.
https://doi.org/10.3390/make1020043.
[45] Park, J. J., Cho, J. S., Lee, G., Yun, D. Y., Park, S. K., Park, K. J., & Lim, J. H. (2023). Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging.
Foods, 12, 3471.
https://doi.org/10.3390/foods12183471.
[46] Kheiralipour, K., Chelladurai, V., & Jayas, D.S. (2023a). Imaging Systems and Image Processing Techniques. In Image Processing: Advances in Applications and Research. Edited by Jayas, D.S. New York, USA: Nova Science Publishers.
[47] Kheiralipour, K., Ahmadi, H., Rajabipour, A., & Rafiee, S. (2018).
Thermal Imaging, Principles, Methods and Applications. 1
st Ed. Ilam University Publication, Ilam, Iran.
[48] Kheiralipour, K., & Jayas D.S. (2023b). Applications of near infrared hyperspectral imaging in agriculture, natural resources, and food in Iran. 15th National and 1st International Congress of Mechanics of Biosystems Engineering and Agricultural Mechanization. Karaj, Iran.
[49] Kheiralipour, K., & Jayas, D.S. (2023a). Advances in image processing applications for assessing leafy materials. International Journal of Tropical Agriculture. 41(1-2), 31-47.
[50] Kheiralipour, K., Singh, C. B., & Jayas, D. S. (2023b). Applications of Visible, Thermal, and Hyperspectral Imaging Techniques in the Assessment of Fruits and Vegetables. In Image Processing: Advances in Applications and Research. Edited by Jayas, D.S. New York, USA: Nova Science Publishers. [In persion]
[52] Kheiralipour, K., & Jayas, D.S. (2023c). Image Processing for the Quality Assessment of Flour and Flour-Based Baked Products. In Image Processing: Advances in Applications and Research. Edited by Jayas, D.S. New York, USA: Nova Science Publishers.
[53] Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios.
Sensors. 22(19), 7134.
https://doi.org/10.3390/s22197134.
[54] Salam, S., Kheiralipour, K., & Jian, F. (2022). Detection of unripe kernels and foreign materials in chickpea mixtures using image processing.
Agriculture, 12(7), 995.
https://doi.org/10.3390/agriculture12070995.
[55] Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., & Jayas, D.S. (2013).
Development of a new threshold-based classification model for analyzing thermal imaging data to detect fungal infection of pistachio kernel.
Agricultural Research, 2, 127-131. https://doi.org/10.1007/s40003-013-0057-7.
[56] Farokhzad, S., Modares Motlagh, A., Ahmadi Moghadam, P., Jalali Honarmand, S., & Kheiralipour, K. (2020). Application of infrared thermal imaging technique and discriminant analysis methods for non-destructive identification of fungal infection of potato tubers. Journal of Food Measurement and Characterization. 14(1): 88-94. https://doi.org/10.1007/s11694-019-00270-w.
[57] Arjomandi, H.R., Kheiralipour, K., & Amarloei, A. (2022). Estimation of dust concentration by a novel machine vision system. Scientific Reports, 12(1), 1-8. https://doi.org/10.1038/s41598-022-18036-8.