[1] Karimi, S., Abiri, A. & Shafiee, M. (2022). Experimental study of the passage of canola oil and olive oil droplets between the water-oil interfaces. J. Food Bio. Eng, 5, 16-23.
[2] Pekkarinen, S., Hopia, A. & Heinonen, M. (1998). Effect of processing on the oxidative stability of low erucic acid turnip rapeseed (Brassica rapa) oil. Lipid Fett, 100, 69-74.
[3] Gunstone FD, Harwood JL & FB, P. (1994). Occurrence and characteristics. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook, Chapman, London. 47-223.
[4] Koski, A., Psomiadou, E., Tsimidou, M., Hopia, A., Kefalas, P., Wähälä, K. & Heinonen, M. (2002). Oxidative stability and minor constituents of virgin olive oil and cold-pressed rapeseed oil. Eur. Food Res. Technol., 214, 294-298.
[5] Yang, T., Liu, T.-X., Li, X.-T. & Tang, C.-H. (2019). Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocoll., 94, 255-267.
[6] Harman, C. L., Patel, M. A., Guldin, S. & Davies, G.-L. (2019). Recent developments in Pickering emulsions for biomedical applications. Curr. Opin. Colloid Interface Sci., 39, 173-189.
[7] Jafari, S. M., He, Y. & Bhandari, B. (2007). Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Res. Int., 40, 862-873.
[8] Kim, H.-J., Decker, E. A. & McClements, D. J. (2006). Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocoll., 20, 586-595.
[9] McClements, D. J. (2004). Food emulsions: principles, practices, and techniques(CRC press Publisher, Place:Published.
[10] Perrier-Cornet, J., Marie, P. & Gervais, P. (2005). Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J. Food Eng., 66, 211-217.
[11] Clift, R., Grace, J. & Weber, M. (1978). Bubbles, Drops and Particles, Academic Press, New York.
[12] Jamialahmadi, M. & Müller-Steinhagen, H. (1992). Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns. Chem. Eng. J., 50, 47-56.
[13] Kracht, W. & Finch, J. (2010). Effect of frother on initial bubble shape and velocity. Int. J. Miner. Process., 94, 115-120.
[14] Sattari, A. & Hanafizadeh, P. (2019). Bubble formation on submerged micrometer-sized nozzles in polymer solutions: An experimental investigation. Colloids Surf., A, 564, 10-22.
[15] Pierre, J., Poujol, M. & Séon, T. (2022). Influence of surfactant concentration on drop production by bubble bursting. Phys. Rev. Fluids, 7, 073602.
[16] Constante-Amores, C., Batchvarov, A., Kahouadji, L., Shin, S., Chergui, J., Juric, D. & Matar, O. (2021). Role of surfactant-induced Marangoni stresses in drop-interface coalescence. J. Fluid Mech., 925, A15.
[17] Karimi, S., Abiri, A., Shafiee, M., Abbasi, H. & Ghadam, F. (2021). New Correlations for the Prediction of Terminal Velocity and Drag Coefficient of a Bubble Rising. Iran. J. Sci. Technol. - Trans. Mech. Eng., 22, 71-87.
[18] Karimi, S., Shafiee, M., Abiri, A. & Ghadam, F. (2019). The drag coefficient prediction of a rising bubble through a non-Newtonian fluid. Amir kabir J. Mech. Eng., 52, 863-880. [ In Persian].
[19] Karimi, S., Abiri, A., Shafiee, M. & Mohamadzadeh, N. (2022). Experimental Study on a Rising Oil Droplet through a Water-Oil Interface. J. Mech. Eng., 51, 361-368. [In Persian]
[20] Deng, C., Huang, W., Wang, H., Cheng, S., He, X. & Xu, B. (2018). Preparation of micron-sized droplets and their hydrodynamic behavior in quiescent water. Braz. J. Chem. Eng., 35, 709-720.
[21] Frumkin, A. (1947). On surfactants and interfacial motion. Zh. Fiz. Khim., 21, 1183-1204.
[22] Dubois, V., Breton, S., Linder, M., Fanni, J. & Parmentier, M. (2007). Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 109, 710-732.
[23] Obiedzinska, A. & Waszkiewicz-Robak, B. (2012). Cold pressed oils as functional food. Zywnosc-Nauka Technologia Jakosc, 19, 27-44.
[24] Karimi, S., Shafiee, M., Ghadam, F., Abiri, A. & Abbasi, H. (2021). Experimental study on drag coefficient of a rising bubble in the presence of rhamnolipid as a biosurfactant. J. Dispersion Sci. Technol., 42, 835-845.
[25] Tzounakos, A., Karamanev, D. G., Margaritis, A. & Bergougnou, M. A. (2004). Effect of the surfactant concentration on the rise of gas bubbles in power-law non-Newtonian liquids. Ind. Eng. Chem. Res., 43, 5790-5795.
[26] Li, Y., Yang, L., Zhu, T., Yang, J. & Ruan, X. (2013). Biosurfactants as alternatives to chemosynthetic surfactants in controlling bubble behavior in the flotation process. J. Surfactants Deterg., 16, 409-419.
[27] Karimi, S., Abiri, A. & Shafiee, M. (2022). Hydrodynamic study of a rising bubble in the presence of Cetyltrimethylammonium bromide. Iran. J. Chem. Chem. Eng., 42, 486-499.
[28] Maia, P. C., Santos, V. P., Fereira, A. S., Luna, M. A., Silva, T. A., Andrade, R. F. & Campos-Takaki, G. M. (2018). An efficient bioemulsifier-producing Bacillus subtilis UCP 0146 isolated from mangrove sediments. Colloids Interfaces, 2, 58.
[29] Ciszewski, R. K., Gordon, B. P., Muller, B. N. & Richmond, G. L. (2019). Takes Two to Tango: Choreography of the Coadsorption of CTAB and Hexanol at the Oil–Water Interface. J. Phys. Chem., 123, 8519-8531.
[30] Yao, N., Wang, Y., Liu, J., Sun, X., Hao, Z., Liu, Y., Chen, S. & Wang, G. (2021). Bubble rise characteristics in oscillating grid turbulence. Miner. Eng., 164, 106832.
[31] Shang, X., Luo, Z., Hu, G. & Bai, B. (2022). Role of surfactant-induced Marangoni effects in droplet dynamics on a solid surface in shear flow. Colloids Surf., A, 654, 130142.
[32] Yan, X., Zheng, K., Jia, Y., Miao, Z., Wang, L., Cao, Y. & Liu, J. (2018). Drag coefficient prediction of a single bubble rising in liquids. Ind. Eng. Chem. Res., 57, 5385-5393.
[33] Rodi, W. & Fueyo, N. (2002). Direct test of boussinesq's hypothesis and the k-transport equation using experimental, DNS and LES data. Eng. Turbul. Modell. Exp., 167-176.
[34] Wegener, M., Kraume, M. & Paschedag, A. R. (2010). Terminal and transient drop rise velocity of single toluene droplets in water. AIChE journal, 56, 2-10.
[35] Kelbaliyev, G. & Ceylan, K. (2007). Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops. Chem. Eng. Commun., 194, 1623-1637.
[36] Rao, A., Reddy, R. K., Ehrenhauser, F., Nandakumar, K., Thibodeaux, L. J., Rao, D. & Valsaraj, K. T. (2014). Effect of surfactant on the dynamics of a crude oil droplet in water column: Experimental and numerical investigation. Can. J. Chem. Eng., 92, 2098-2114.
[37] Schiller, L. (1933). A drag coefficient correlation. Zeit. Ver. Deutsch. Ing., 77, 318-320.
[38] Vecer, M., Lestinsky, P., Wichterle, K. & Ruzicka, M. (2012). On bubble rising in countercurrent flow. Int. J. Chem. React. Eng., 10.
[39] Bide, Y., Fashapoyeh, M. A. & Shokrollahzadeh, S. (2012). Structural investigation and application of Tween 80-choline chloride self-assemblies as osmotic agent for water desalination. Sci. Rep., 11, 17068.