Preparation and Characterization of Microcrystalline Cellulose from Lucerne (Medicago sativa) Waste Fibers as Food Additive

Document Type : Research Article

Authors

1 Academic Staff

2 Department of Chemical Technologies, Iranian Research Organization for Science and Technology

Abstract

One of the cellulose derivatives is microcrystalline cellulose (MCC), that is widely used in food and pharmaceutical industries as excipients, anti-caking agents, emulsifiers, binders, disintegrating agents, dispersants, emulsion stabilizers, thermal stabilizers and carriers for fast drying and tableting agents. In this study, MCC was prepared from dried Lucerne (alfalfa) waste fibers of which the pigments were already extracted as food colorants. This cheap and renewable raw material was converted to MCC by conventional methods including dewaxing, de-lignification, bleaching and acid hydrolysis. Commercial microcrystalline cellulose (Avicel PH-101) was used as reference compound for comparative studies. For characterization of prepared MCC, particle size analysis (PSA) was performed. The results of the particle size analysis showed mean particle size of the prepared sample was approximately 26 µm. Fourier Transform Infrared spectroscopy (FTIR) of prepared MCC showed similar spectra to that the commercial MCC. Thermogravimetric analysis (TGA) of the prepared MCC in comparison to that of the commercial MCC contain three main stages of weight changes. TGA behavior of both samples are matching together. In order to study the crystallin structure of the prepared MCC, X-ray diffraction (XRD) analysis was carried out. The XRD pattern from prepared MCC was similar to that of commercial one. The SEM images of Lucerne (alfalfa) and the commercial MCC showed that microcrystals of both MCC have similar morphology. They both represent an irregular, agglomerated, and elongated morphology. Overall, the properties of the prepared MCC are comparable to those of the commercial type, and can be used as food and pharmaceutical additives.

Graphical Abstract

Preparation and Characterization of Microcrystalline Cellulose from Lucerne (Medicago sativa) Waste Fibers as Food Additive

Highlights

  • Microcrystalline cellulose has been prepared from the alfalfa fibers wastes after extraction of natural pigments.
  • Dewaxing, de-lignification, bleaching and acid hydrolysis reactions have been used in this processes.
  • The prepared microcrystalline cellulose is compatible with the commercial sample and can be used in food and pharmaceutical industries.

Keywords

Main Subjects


[1] Bras, J., Hassan, M. L., Bruzesse, C., Hassan, E. A., El-Wakil, N. A., Dufresne, A. (2010). Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod., 32, 627–633.
[2] Abraham, E., Deepa, B., Pothan, L. A., Jacob, M., Thomas, S., Cvelbar, U., & Anandjiwala, R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach, Carbohydr Polym., 86, 1468–1475.
[3] Siró. I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17, 459–494.
[4] Fahma, F., Iwamoto, S., Hori, N., Iwata, T., Takemura, A. (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 17, 977–985.
[5] Das, K., Ray, D., Bandyopadhyay, N. R., Sengupta, S. (2010). Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ, 18, 355-363.
[6] Kian, L. K., Jawaid, M., Ariffin, H., Alothman, O. Y. (2017). Isolation and characterization of microcrystalline cellulose from roselle fibers. Int. J. Biol. Macromol, 103, 931-940.
[7] Nsor-Atindana, J., Chen, M., Goff, H. D., Zhong, F., Sharif, H. R., Li, Y. (2017). Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr Polym, 172, 159-174.
[8] EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2017). Safety of the proposed amendment of the specifications for microcrystalline cellulose (E 460 (i)) as a food additive. EFSA J., 15(2), e04699.
[9] Baghel, R. S., Reddy, C. R. K., Singh, R. P. (2021). Seaweed-based cellulose: Applications, and future perspectives. Carbohydr Polym., 267, 118241.
[10] Haldar, D., Purkait, M. K. (2020). Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr Polym., 250, 116937.
[11] Thoorens, G., Krier, F., Leclercq, B., Carlin, B., Evrard, B. (2014). Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int. J. Pharm., 473, 64-72.
[12] Abu-Thabit, N. Y., Judeh, A. A., Hakeem, A. S., Ul-Hamid, A., Umar, Y., & Ahmad, A. (2020). Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int. J. Biol. Macromol., 155, 730-739.
[13] Collazo-Bigliardi, S., Ortega-Toro, R., Boix, A. C. (2018). Isolation and characterization of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr Polym., 191, 205-215.
[14] Setu, M. N. I., Mia, M. Y., Lubna, N. J., Chowdhury, A. A. (2014). Preparation of microcrystalline cellulose from cotton and its evaluation as direct compressible excipient in the formulation of Naproxen tablets. Dhaka Uni. J. Pharm. Sci., 13, 187-192.
[15] Rashid, M., Gafur, M. A., Sharafat, M. K., Minami, H., Miah, M. A. J., Ahmad, H. (2017). Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydr Polym., 170, 72-79.
[16] Haafiz, M. M., Eichhorn, S. J., Hassan, A., Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym., 93, 628-634.
[17] Owolabi, A. F., Haafiz, M. M., Hossain, M. S., Hussin, M. H., Fazita, M. N. (2017). Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. Int. J. Biol. Macromol., 95, 1228-1234.
[18] Winuprasith, T., Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32, 383-394.
[19] Trache, D., Khimeche, K., Mezroua, A., Benziane, M. (2016). Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibers and its thermal stability. J. Therm. Anal. Calorim, 124, 1485-1496.
[20] Kalita, R. D., Nath, Y., Ochubiojo, M. E., Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf. B., 108, 85-89.
[21] Jahan, M. S., Saeed, A., He, Z., Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18, 451-459.
[22] Merci, A., Urbano, A., Grossmann, M. V. E., Tischer, C. A., Mali, S. (2015). Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res. Int., 73, 38-43.
[23] Wang, D., Shang, S. B., Song, Z. Q., Lee, M. K. (2010). Evaluation of microcrystalline cellulose prepared from kenaf fibers. J. Ind. Eng. Chem., 16, 152-156.
[24] Kharismi, R. R. A. Y., Suryadi, H. (2018). Preparation and characterization of microcrystalline cellulose produced from betung bamboo (dendrocalamus asper) through acid hydrolysis. J. Young Pharmacists, 10, S79.
[25] Ejikeme, P. M. (2008). Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: Orange mesocarp. Cellulose, 15, 141-147.
[26] Suvachittanont, S., Ratanapan, P. (2013). Optimization of micro crystalline cellulose production from corn cob for pharmaceutical industry investment. J. Chem. Chem. Eng., 7, 1136.
[27] Katakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. J Clean Prod., 249, 119342.
[28] Abdullah, N. A., Sainorudin, M. H., Rani, M. S. A., Mohammad, M., Abd Kadir, N. H., & Asim, N. (2021). Structure and thermal properties of microcrystalline cellulose extracted from coconut husk fiber. Polimery, 66, 187-192.
[29] Tarchoun, A. F., Trache, D., Klapötke, T. M. (2019). Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int. J. Biol. Macromol., 138, 837-845.
[30] Zhao, T., Chen, Z., Lin, X., Ren, Z., Li, B., Zhang, Y. (2018). Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym., 184, 164-170.
[31] Hasanin, M. S., Kassem, N., Hassan, M. L. (2021). Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Convers. Biorefin., 1-8.
[32] Battista, O. A. (1950). Hydrolysis and crystallization of cellulose. Ind. Eng. Chem., 42, 502–507.
[33] Wang, Z., Yao, Z., Zhou, J., Zhang, Y. (2017). Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym., 157, 945-952.
[34] Segal, L., Creely, J. J., Martin, A. E., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J., 29(10), 786-794.
[35] French, A. D., Santiago, Cintrón, M. (2013). Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose, 20(1), 583-588.
[36]. El-Sakhawy, M., Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydr Polym., 67, 1–10.
[37] Trache, D., Hussin, M. H., Chuin, C. T. H., Sabar, S., Fazita, M. N., Taiwo, O. F., Hassan, T. M., Haafiz, M. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol., 93, 789–804.
[38] Rosa, S. M., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M., Bica, C. I. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym., 87, 1131-1138.
[39] He, J. X., Tang, Y., Wang, S. Y. (2007). Differences in morphological characteristics of bamboo fibers and other natural cellulose fibers: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran. Polym. J., 16, 807–818.
[40] Liu, Y., Kim, H. J. (2017). Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors, 17, 1469.
[41] Kale, R. D., Bansal, P. S., Gorade, V. G. (2018). Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. J. Polym. Environ., 26, 355-364.
[42] Soni, B., Mahmoud, B. (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym., 134, 581-589.
[43] Rhim, J. W., Reddy, J. P., Luo, X. (2015). Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose, 22, 407-420.