[1] Hadian, M., Rajaei, A., Mohsenifar, A., & Tabatabaei, M. (2017). Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT, 84, 394-401.
[2] Rajaei, A., Hadian, M., Mohsenifar, A., Rahmani-Cherati, T., & Tabatabaei, M. (2017). A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packag. Shelf Life, 14, 137-145.
[3] Atarian, M., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Bodaghi, H. (2019). Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydr. Polym., 210, 47-55.
[4] Hosseini, E., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Jahanbin, K. (2020). Preparation of Pickering flaxseed oil-in-water emulsion stabilized by chitosan-myristic acid nanogels and investigation of its oxidative stability in presence of clove essential oil as antioxidant. Food Biophysics, 15(2), 216-228.
[5] Hosseini, R. S., & Rajaei, A. (2020). Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise. Carbohydr. Polym., 241, 116340.
[6] Rajaei, A., Shahbazi, N., Tabatabaei, M., Mohsenifar, A., & Bodaghi, H. (2020). Impact of chitosan-capric acid nanogels incorporating thyme essential oil on stability of pomegranate seed oil-in-water Pickering emulsion. Iran. J. Chem. Chem. Eng. (IJCCE).
[7] Yusuf, K. A., Olaniyan, A. M., Atanda, E. O., & Sulieman, I. A. (2014). Effects of heating temperature and seed condition on the yield and quality of mechanically expressed groundnut Oil. Int. J. Eng. Technol., 2(7), 73-78.
[8] Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf., 5(4), 169-186.
[9] Dijkstra, A. J., & Segers, J. C. (2007). Production and refining of oils and fats. The Lipid Handbook with CD-ROM, 143-262.
[10] Zhang, X., Li, Y., Li, J., Liang, H., Chen, Y., Li, B. ... & Liu, S. (2022). Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT, 154, 112605.
[11] Esparza, Y., Ngo, T. D., & Boluk, Y. (2020). Preparation of powdered oil particles by spray drying of cellulose nanocrystals stabilized Pickering hempseed oil emulsions. Colloids Surf. A Physicochem. Eng. Asp., 598, 124823.
[12] Singh, C. K. S., Lim, H. P., Tey, B. T., & Chan, E. S. (2021). Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile. Carbohydr. Polym., 251, 117110.
[13] Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Int. Food Res. J., 41(2), 172-183.
[14] Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., & Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm., 546(1-2), 194-214.
[15] Chopde, S., Datir, R., Deshmukh, G., Dhotre, A., & Patil, M. (2020). Nanoparticle formation by nanospray drying & its application in nanoencapsulation of food bioactive ingredients. J. Agric. Food Res., 2, 100085.
[16] Jafari, S. M., Arpagaus, C., Cerqueira, M. A., & Samborska, K. (2021). Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci. Technol., 109, 632-646.
[17] Sabnis, S., & Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer bull., 39(1), 67-71.
[18] Robert, P., García, P., Reyes, N., Chávez, J., & Santos, J. (2012). Acetylated starch and inulin as encapsulating agents of gallic acid and their release behaviour in a hydrophilic system. Food chem., 134(1), 1-8.
[19] Xie, J., Luo, Y., Chen, Y., Liu, Y., Ma, Y., Zheng, Q., Yue P. & Yang, M. (2019). Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydr. Polym., 213, 128-137.
[20] Shukla, N., Liu, C., Jones, P. M., & Weller, D. (2003). FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater., 266(1-2), 178-184.
[21] Rao, K. K., Reddy, P. R., Lee, Y. I., & Kim, C. (2012). Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydr. Polym., 87(1), 920-925.
[22] Shahidi, F. (Ed.). (2005). Bailey's Industrial Oil and Fat Products, Industrial and Nonedible Products from Oils and Fats (Vol. 6). John Wiley & Sons.
[23] Shahparast, Y., Eskandani, M., Rajaei, A., & Khosroushahi, A. Y. (2019). Preparation, physicochemical characterization and oxidative stability of omega-3 fish oil/α-tocopherol-co-loaded nanostructured lipidic carriers. Adv. Pharm. Bull., 9(3), 393.
[24] Harrison, G., Franks, G. V., Tirtaatmadja, V., & Boger, D. V. (1999). Suspensions and polymers-Common links in rheology. Korea Aust. Rheol. J., 11(3), 197-218.
[25] Song, X., Pei, Y., Qiao, M., Ma, F., Ren, H., & Zhao, Q. (2015). Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocoll., 45, 256-263.
[26] Kpogbemabou, D., Lecomte-Nana, G., Aimable, A., Bienia, M., Niknam, V., & Carrion, C. (2014). Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content. Colloids Surf. A Physicochem. Eng. Asp., 463, 85-92.
[27] Zhang, X., Guan, J., Ni, R., Li, L. C., & Mao, S. (2014). Preparation and solidification of redispersible nanosuspensions. J. Pharm. Sci. Res., 103(7), 2166-2176.
[28] Bunjes, H. (2005). Characterization of solid lipid nano-and microparticles (pp. 41-66). CRC Press: Boca Raton, FL.
[29] Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. J. Food Eng., 111(1), 135-148.
[30] Ravi, M., Song, S., Wang, J., Nadimicherla, R., & Zhang, Z. (2016). Preparation and characterization of biodegradable poly (ε-caprolactone)-based gel polymer electrolyte films. Ionics, 22(5), 661-670.
[31] Martínez-Monteagudo, S. I., Saldana, M. D., & Kennelly, J. J. (2012). Kinetics of non-isothermal oxidation of anhydrous milk fat rich in conjugated linoleic acid using differential scanning calorimetry. J. Therm. Anal. Calorim., 107(3), 973-981.
[32] Ulkowski, M., Musialik, M., & Litwinienko, G. (2005). Use of differential scanning calorimetry to study lipid oxidation. 1. Oxidative stability of lecithin and linolenic acid. J. Agric. Food Chem., 53(23), 9073-9077.
[33] Kowalski, B. (1991). Thermal-oxidative decomposition of edible oils and fats. DSC studies. Thermochim. acta, 184(1), 49-57.
[34] Pereira, T. A., & Das, N. P. (1990). The effects of flavonoids on the thermal autoxidation of palm oil and other vegetable oils determined by differential scanning calorimetry. Thermochim. acta, 165(1), 129-137.
[35] Büchi Labortechnik, A. G. (2017). PLGA sub-micron particles by Nano Spray Drying (No. 273). Application Note.