Effect of Gamma Irradiation and Different Packagings on the Shelf Life of Edible Mushrooms (Agaricus bisporus)

Document Type : Research Article


1 Biosystems Engineering Dept. Tarbiat Modares University

2 Professor of Biosystems Engineering Dept., Tarbiat Modares University,

3 Food Science and Technology, Tarbiat Modares University


< p >This study was conducted to evaluate the influence of gamma irradiation doses and packaging materials on the shelf life of edible button mushroom )Agaricus bisporus). To do so, the fresh mushrooms were packed in two different packages: (polyethylene and nanocomposite) and immediately irradiated (0, 1, 2 and 3 kGy) then stored (2–3°C). The effect of these parameters on qualitative characteristics of mushrooms (weight loss, cap diameter, pH, total soluble solids, firmness, and whiteness) during storage (1, 5, 10, 15 and 20 days after irradiation) was evaluated. Our findings showed that the mutual interaction of irradiation dose and packaging material, also irradiation dose and storage time were significant (p < 0.01) in all measured properties except firmness. It can be concluded that using proper doses of irradiation (1-2 kGy) and appropriate packaging material (nanocomposite) could significantly increase the shelf life of edible button mushrooms for 20 days.

Graphical Abstract

Effect of Gamma Irradiation and Different Packagings on the Shelf Life of Edible Mushrooms (Agaricus bisporus)


  • Investigation of the combined effects of gamma irradiation and packaging (nanocomposite based on nanoemulsion silicone) on the quality characteristics of mushrooms.
  • Investigation of appearance changes of gamma irradiation-pretreated mushrooms under different packages using image processing technique.
  • Introducing an optimized imaging system for agricultural products, especially mushrooms.


Main Subjects

Tehran, Iran. [In Persian]
[5] Lester, G. E., Hallman, G. J. & Perez, J. A. (2010). ɤ-Irradiation dose: effects on baby-leaf spinach ascorbic acid, carotenoids, folate, -tocopherol, and phylloquinone concentrations. J. Agric. Food. Chem., 58(8), 4901-4906.
[6] Mortazavi, A., Motamedzadegan, A., & Ziyaolhag, H. (2007). Non-thermal methods of food storage (Translation). (pp. 387). Ferdowsi University of Mashhad. [In Persian]
[7] Harder, M. N. C., Arthur, V., & Arthur, P. B. (2016). Irradiation of Foods: Processing technology and effects on nutrients: effect of ionizing radiation on food components encyclopedia of food and health. (pp. 476-481).  
[8] Raeisi, M., Razdari, M. A., & Ebrahimi, R. (2014). A Study of gamma irradiation method on storage apple. 21th National Congress of Food Science and Technology, Shiraz University, Shiraz, Iran.[In Persian]
[9] Conte, A., Cappelletti, G., Nicoletti, G., Russo, C., & Del Nobile, M. (2015). Environmental implications of food loss probability in packaging design. Food Res. Int., 78, 11-17.
[10] Kumar, P., Sandeep, K., Alavi, S., Truong, V. D., & Gorga, R. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J. Food Eng., 100(3), 480-489.
[11] Jouki, M., & Khazaei, N. (2014). Effect of low-dose gamma irradiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packag. Shelf Life., 1, 49-55.
[12] Rivera, C.S., Blanco, D., Marco, P., Oria, R., & Venturini, M. A. E. (2011). Effects of electron-beam irradiation on the shelf life, microbial populations and sensory characteristics of summer truffles (Tuber aestivum) packaged under modified atmospheres. Food Microbiol., 28(1), 141-148.
[13] Fernandes, A., Barreira, J. O. C., Antonio, A. L., Oliveira, M. B. P., Martins, A., & Ferreira, I. C. (2016). Extended use of gamma irradiation in wild mushrooms conservation: validation of 2 kGy dose to preserve their chemical characteristics. LWT Food Sci. Technol., 67, 99-105.
[14] Fernandes, A., Barreira, J. C., Gunaydi, T., Alkan, H., Antonio, A. L., Oliveira, M. B. P., & Ferreira, I. C. (2017). Effect of gamma irradiation and extended storage on selected chemical constituents and antioxidant activities of sliced mushroom. Food Control., 72, 328-337.‏
[15] Caleb, O. J., Opara, U. L., Mahajan, P. V., Manley, M., Mokwena, L., & Tredoux, A. G. (2013). Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs.‘Acco’and ‘Herskawitz’). Postharvest Biol. Technol., 79, 54-61.      
[16] Aday, M. S. (2016). Application of electrolyzed water for improving postharvest quality of mushroom. LWT Food Sci. Technol., 68, 44-51.
[17] Dhalsamant, K., Dash, S. K., Bal, L. M., & Panda, M. K. (2015). Effect of perforation mediated MAP on shelf life of mushroom (Volvariella volvacea). Sci. Hortic., 189, 41-50.
[18] Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrason. Sonochem., 36, 286-300.
[19] Leon, K., Mery, D., Pedreschi, F., & Leon, J. (2006). Color measurement in L a b units from RGB digital images. Food Res. Int., 39(10), 1084-1091.‏
[20] Montanez, J. C. Rodriguez, F. A., Mahajan, P. V., & Frias, J. M. (2010). Modelling the gas exchange rate in perforation-mediated modified atmosphere packaging: Effect of the external air movement and tube dimensions. J. Food Eng., 97(1), 79-86.
[21] Oliveira, F., Sousa-Gallagher, M., Mahajan, P., & Teixeira, J. (2012). Evaluation of MAP engineering design parameters on quality of fresh-sliced mushrooms. J. Food Eng., 108(4), 507-514.
[22] Oliveira, F., Sousa-Gallagher, M., Mahajan, P., & Teixeira, J. (2012). Development of shelf-life kinetic model for modified atmosphere packaging of fresh sliced mushrooms. J. Food Eng., 111, 466-473.  
[23] Taghizadeh, M., Gowen, A., Ward, P., & O''Donnell, C. P. (2010). Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innovative Food Sci. Emerg. Technol., 11(3), 423-431.
[24] Jiang, T., Luo, S., Chen, Q., Shen, L., & Ying, T. (2010). Effect of integrated application of gamma irradiation and modified atmosphere packaging on physicochemical and microbiological properties of shiitake mushroom (Lentinus edodes). Food Chem., 122(3), 761-767.
[25] Ajlouni, S., Beelmen, R., & Thompson, D. (1996). Influence of gamma irradiation on quality characteristic, sugar content, and respiration rate of mushrooms during post harvest storage. Aalam Al-Zarra, 89-95.
[26] Narvaiz, P. (1994). Some physicochemical measurements on mushrooms (Agaricus campestris) irradiated to extend shelf-life. LWT Food Sci. Technol., 27(1), 7-10.
[27] Sari, L. K., Setha, S., & Naradisorn, M. (2016). Effect of UV-C irradiation on postharvest quality of ‘Phulae’pineapple. Sci. Hortic., 213, 314-320.
‏[28] Cote, S., Rodoni, L., Miceli, E., Concell, A. A., Civello, P. M., & Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biol. Technol., 83, 83-89.
[29] Eskin, N., & Robinson, D. (2000). Biotechnology to improve shelf life and quality traits of foods. Food Shelf Life Stability: Chemical, Biochemical, and Microbiological Changes. CRC Press.
[30] Gimenez, M., Olarte, C., Sanz, S., Lomas, C., Echavarri, J., & Ayala, F. (2003). Influence of packaging films on the sensory and microbiological evolution of minimally processed borage (Borrago officinalis). J. Food Sci., 68(3), 1051-1058.
[31] Zivanovic, S., Busher, R., & Kim, K. (2000). Textural changes in mushrooms (Agaricus bisporus) associated with tissue ultrastructure and composition. J. Food Sci., 65(8), 1404-1408.
[32] Xing, Z., Wang, Y., Feng, Z., Zhao, Z., & Liu, X. (2007). Effect of 60 Co-irradiation on postharvest quality and selected enzyme activities of Hypsizygus marmoreus fruit bodies. J. Agric. Food. Chem., 55(20), 8126-8132.
[33] Xiong, Q. L., Xing, Z. T., Feng, Z., Tan, Q., & Bian, Y. b. (2009). Effect of 60Co -irradiation on postharvest quality and selected enzyme activities of Pleurotus nebrodensis. LWT Food Sci. Technol., 42(1), 157-161.
[34] Benoit, M., D''Aprano, G., & Lacroix, M. (2000). Effect of -irradiation on phenylalanine ammonia-lyase activity, total phenolic content, and respiration of mushrooms (Agaricus bisporus). J. Agric. Food. Chem., 48(12), 6312-6316.
[35] Beaulieu, M., D’Aprano, G., & Lacroix, M. (2002). Effect of dose rate of gamma irradiation on biochemical quality and browning of mushrooms Agaricus bisporus. Radiat. Phys. Chem., 63(3), 311-315.
[36] Fernandes, A., Antonio, A. L., Barreira, J. C., Oliveira, M. B. P., Martins, A., & Ferreira, I. C. (2012). Effects of gamma irradiation on physical parameters of Lactarius deliciosus Wild edible mushrooms. Postharvest Biol. Technol., 74, 79-84.
[37] Khan, Z. U., Aisikaer, G., Khan, R. U., Bu, J., Jiang, Z., Ni, Z., & Ying, T. (2014). Effects of composite chemical pretreatment on maintaining quality in button mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol., 95, 36-41.