[1] Akbari Kishi S. Asmar M. and Mirpur M.S. (2017).The Study of Antibiotic Residues in Raw and Pasteurized Milk in Gilan Province . Iran J Med Microbiol. 11 (3) :71-77 (In Persian).
[2] Wang X. Dong S. Gai P. Duan R., and Li F. (2016). Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosensors and Bioelectronics, 82, pp 49-54.
[3] Chen, M. Gan N. Zhou Y. Li T. Xu Q. Cao Y. and Chen Y. (2016). An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta, 161, pp 867-874.
[4] Cacciatore G. Petz M. Rachid S. Hakenbeck R. and Bergwerff A. A. (2004). Development of an optical biosensor assay for detection of β-lactam antibiotics in milk using the penicillin-binding protein 2x. Analytica chimica acta, 520(1-2), pp 105-115.
[5] Moudgil P. Bedi J. S. Aulakh R. S. Gill J. P. S. and Kumar A. (2019). Validation of HPLC Multi-residue Method for Determination of Fluoroquinolones, Tetracycline, Sulphonamides and Chloramphenicol Residues in Bovine Milk. Food Analytical Methods, 12(2), pp 338-346.
[6] Xu M. Wang R. and Li Y. (2017). Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta, 162, pp 511-522.
[7] Jiang, D. Ge P. Wang L. Jiang H. Yang M. Yuan L. and Ju X. (2019). A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors and Bioelectronics, 130, pp 299-306.
[8] SongY. Luo Y. Zhu C. Li H. Du D. and Lin Y. (2016). Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics, 76, pp 195-212.
[9] Chen X. Liu Y. Fang X. Li Z. Pu H. Chang J. and Mao S. (2019). Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosensors and Bioelectronics, 126, pp 664-671.
[10] Gupta P. Bharti A. Kaur N. Singh S. and Prabhakar N. (2018). An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly (3, 4-ethylenedioxythiophene) nanocomposite for detection of MUC1. Journal of Electroanalytical Chemistry, 813, pp 102-108.
[11] Wu B. Y. Hou S. H. Yin F. Li J. Zhao Z. X. Huang J. D. and Chen Q. (2007). Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosensors and Bioelectronics, 22(6), pp 838-844.
[12] Jin H. Zhao C. Gui R. Gao X. and Wang Z. (2018). Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Analytica chimica acta, 1025, pp 154-162.
[13] Okoth O. K. Yan K. Feng J. and Zhang J. (2018). Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sensors and Actuators B: Chemical, 256, 334-341.
[14] Li G. Li S. Wang Z. Xue Y. Dong C. Zeng J. and Zhou Z. (2018). Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Analytical biochemistry, 547, pp 37-44.
[15] Rezaei B. Jamei H. R., and Ensafi A. A. (2018). An ultrasensitive and selective electrochemical aptasensor based on RGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosensors and Bioelectronics, 115, pp 37-44.
[16] Ciucci F. (2018). Modeling Electrochemical Impedance Spectroscopy. Current Opinion in Electrochemistry, 13, pp 132-139.
[17] Izadi Z. Sheikh-Zeinoddin M. Ensafi A. A. and Soleimanian-Zad S. (2016). Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosensors and Bioelectronics, 80, pp 582-589.
[18] Wang N. Lin M. Dai H and Ma H. (2016). Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosensors and Bioelectronics, 79, pp 320-326.
[19] Ugar M. Tufan A. N. Altun M. Guclu K. and Ozyurek M. (2018). Glutathione Peroxidase Activity of Biological Samples Using a Novel Microplate-Based Method. Current Analytical Chemistry, 14(5), pp 512-518.
[20] Zhao, J., Guo, W., Pei, M., & Ding, F. (2016). GR–Fe3O4 NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Analytical Methods, 8(22), 4391-4397.
[21] Song, K. M., Jeong, E., Jeon, W., Cho, M., & Ban, C. (2012). Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Analytical and bioanalytical chemistry, 402(6), 2153-2161.