Fabrication and characterization of biocomposite films based on carboxymethyl cellulose/polyvinyl alcohol/fish gelatin for food packaging exploits

Document Type : Research Article

Authors

1 Ph.D. Student, Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran

2 Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran

3 M.Sc. Student,Department of Food Science & Industries, Khazar Institute of Higher Education, Mahmoodabad, Iran

4 Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), Calle José Antonio Novais, 10, 28040 Madrid, Spain

Abstract

< p >The present study was aimed to investigate the physical and mechanical properties of biodegradable ternary films based on carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and fish gelatin (FG) at different ratios (50CMC/50PVAG:0FG, 40CMC/40PVA:20FG, 35CMC/35PVA:30FG, 30CMC/30PVA:40FG and 25CMC/25PVA:50FG) via a simple casting method. The results showed that adding different ratios of FG (20-50%) to the control film (50CMC/50PVAG:0FG) significantly reduced the solubility and tensile strength of the films, as the 25CMC/25PVA:50FG ratio has the lowest values; also, the moisture content, contact angle, whiteness index, water vapor permeability (WVP) and elongation at break (EAB) of the films showed a significant increase compared to the control (p

Graphical Abstract

Fabrication and characterization of biocomposite films based on carboxymethyl cellulose/polyvinyl alcohol/fish gelatin for food packaging exploits

Highlights

  • Films based on carboxymethyl cellulose (CMC), poly(vinyl alcohol) (PVA), and fish gelatin (FG) were prepared.
  • The film solubility was decreased with the addition of FG.
  • Fourier-transform infrared (FTIR) spectroscopy showed interactions among polymers.
  • Differential scanning calorimetry (DSC) indicated that the thermal stability of composite films reduced after the addition of FG.
  • CMC/PVA/FG ternary films showed potential as eco-friendly packaging materials.

Keywords

Main Subjects


[1] Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Tech, 4(6), 849-875.
[2] Hashemi, S. M. B., Khaneghah, A. M., Ghahfarrokhi, M. G., & Eş, I. (2017). Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol., 125, 26-34.
[3] Qiu, K., & Netravali, A. N. (2012). Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol., 72(13), 1588-1594.
[4] Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high-and low-methyl pectin films. Food Hydrocoll., 52, 732-740.
[5] Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem., 136(3-4), 1490-1495.
[6] Imran, M., El-Fahmy, S., Revol-Junelles, A. M., & Desobry, S. (2010). Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr. Polym., 81(2), 219-225.
[7] Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut., 23(15), 15310-15320.
[8] Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll., 29(2), 290-297.
[9] Imran, M., Revol-Junelles, A. M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., ... & Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll., 29(2), 407-419.
[10] Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. J. Food Sci., 75(1), 43-49.
[11] Rhim, J. W., Hong, S. I., Park, H. M. & Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem., 54(16), 5814-5822.
[12] Dhandapani, E., Suganthi, S., Vignesh, S., Dhanalakshmi, M., Kalyana Sundar, J., & Raj, V. (2020). Fabrication and physicochemical assessment of L-Histidine cross-linked PVA/CMC bio-composite membranes for antibacterial and food-packaging applications. Mater. Technol., 1-11.
[13] Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydr. Polym., 227, 115303.
[14] Ruan, C., Zhang, Y., Wang, J., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. Int. J. Biol. Macromol., 134, 1038-1044.
[15] ASTM. (2005). Standard test method for water vapor transmission of materials (E96-05). In Annual Book of ASTM Standards. American Society for Testing Materials, Philadelphia, PA.
[16] Mohajer, S., Rezaei, M., & Hosseini, S. F. (2017). Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydr. Polym., 157, 784-793.
[17] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2021). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll., 112, 106339.
[18] ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
[19] Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll., 25(5), 1372-1381.
[20] Zhou, J. J., Wang, S. Y., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci., 74(7), 50-56.
[21] Abdelhedi, O., Nasri, R., Jridi, M., Kchaou, H., Nasreddine, B., Karbowiak, T., ... & Nasri, M. (2018). Composite bioactive films based on smooth-hound viscera proteins and gelatin: Physicochemical characterization and antioxidant properties. Food Hydrocoll., 74, 176-186.
[22] Shahbazi, M., Rajabzadeh, G., Rafe, A., Ettelaie, R., & Ahmadi, S. J. (2017). Physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocoll., 71, 259-269.
[23] Wang, L. F., & Rhim, J. W. (2015). Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. Int. J. Biol. Macromol., 80, 460-468.
[24] Gómez-Estaca, J., De Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 27(7), 889-896.
[25] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod., 67, 403-413.
[26] Cazón, P., Vázquez, M., & Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym. Test., 69, 536-544.
[27] Liu, C., Kou, Y., Zhang, X., Dong, W., Cheng, H., & Mao, S. (2019). Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. Int. J. Pharm., 554, 36-47.
[28] Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym., 84(1), 477-483.
[29] Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol., 99, 746-753.
[30] Castilho, L. R., Mitchell, D. A., & Freire, D. M. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol., 100(23), 5996-6009.
[31] Wu, Z., Huang, X., Li, Y. C., Xiao, H., & Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr. Polym., 199, 210-218.
[32] Arvanitoyannis, I., Nakayama, A., & Aiba, S. I. (1998). Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr. Polym., 36(2-3), 105-119.
[33] Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll., 33(2), 327-335.
[34] Hambleton, A., Debeaufort, F., Bonnotte, A., & Voilley, A. (2009). Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocoll., 23(8), 2116-2124.
[35] Bourtoom, T. (2008). Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin J. Sci. Technol., 30, 149-165.
[36] Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. (2010). Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int. J. Biol. Macromol., 46(1), 1-5.
[37] Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M.A., Mohammadi, A., Ghasemlou, M., Hosseini, S.M. and Khaksar, R., 2014. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydrate polymers, 101, pp.582-591.
[38] Rezaie, A., Rezaei, M., & Alboofetileh, M. (2021). Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of its physical, mechanical and thermal properties. IFSTRJ, 17(2), 287-297.
[39] Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M., & Zhang, X. F. (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 23(13), 2641-2648.
[40] Pan, R., Xuan, W., Chen, J., Dong, S., Jin, H., Wang, X., ... & Luo, J. (2018). Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy, 45, 193-202.
[41] Rajaei, E., & Shekarchizadeh, H. (2019). Investigation of physical and mechanical properties of edible film prepared from opopanax gum (Commiphora guidottii). Food Sci. Technol., 16(91), 323-335.
[42] Kanimozhi, K., Basha, S. K., & Kumari, V. S. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C., 61, 484-491.
[43] Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016). Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll., 56, 93-107.
[44] Ibrahim, M. M., Koschella, A., Kadry, G., & Heinze, T. (2013). Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydr. Polym., 95(1), 414-420.
[45] Martucci, J. F., & Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym. Degrad. Stab., 116, 36-44.