[1] Hyam, R. & Pankhurst, P. (1995). Plants and Their Names: A Concise Dictionary. Oxford: Oxford University Press, 545.
[2] Rubatzky, V. E., & Yamaguchi, M. (1997). Other succulent vegetables. In World Vegetables (pp. 640-703). Springer, Boston, MA.
[3] Simopoulos, A. P., Norman, H. A., Gillaspy, J. E., & Duke, J. A. (1992). Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4), 374-382.
[4] Liu, L., Howe, P., Zhou, Y. F., Xu, Z. Q., Hocart, C., & Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of chromatography A, 893(1), 207-213.
[5] Erkan, N. (2012). Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chemistry, 133(3), 775-781.
[6] Xu, G., Ye, X., Chen, J., & Liu, D. (2007). Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. Journal of Agricultural and Food chemistry, 55(2), 330-335.
[7] Zhu, H., Wang, Y., Liu, Y., Xia, Y., & Tang, T. (2010). Analysis of flavonoids in Portulaca oleracea L. by UV–vis spectrophotometry with comparative study on different extraction technologies. Food Analytical Methods, 3(2), 90-97.
[8] Lim, Y. Y., & Quah, E. P. (2007). Antioxidant properties of different cultivars of Portulaca oleracea. Food chemistry, 103(3), 734-740.
[9] Oliveira, I., Valentão, P., Lopes, R., Andrade, P. B., Bento, A., & Pereira, J. A. (2009). Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchemical Journal, 92(2), 129-134.
[10] Siriamornpun, S., & Suttajit, M. (2010). Microchemical components and antioxidant activity of different morphological parts of Thai wild purslane (Portulaca oleracea). Weed Science, 58(3), 182-188.
[11] Uddin, M., Juraimi, A. S., Hossain, M. S., Un, A., Ali, M., & Rahman, M. M. (2014). Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. The Scientific World Journal, Article ID 951019, 6 pages.
[12] Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology, 48(2), 182-188.
[13] Sicari, V., Loizzo, M. R., Tundis, R., Mincione, A., & Pellicano, T. M. (2018). Portulaca oleracea L.(Purslane) extracts display antioxidant and hypoglycaemic effects. J. Appl. Bot. Food Qual, 91, 39-46.
[14] Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of liposome research, 23(4), 268-275.
[15] He, Z., Xu, M., Zeng, M., Qin, F., & Chen, J. (2016). Interactions of milk α-and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chemistry, 199, 314-322.
[16] Cheraghali F, mirmoghtadaie L, Shojaee-aliabadi S, Hosseini S M. A. (2016). A comprative study of antimicrobial and antioxidant properties of walnut green husk aqueous extract before and after microencapsulation. Iranian Journal of Nutrition Sciences & Food Technology, 11(2), 113-124. [In Persian]
[17] Akbarbaglou, Z., Peighanbardoust, S., Oladgaffari, A., Sarabandi, K. (2018). Effect of inlet air temperature and carrier type and concentration on physicochemical and antioxidant properties of microencapsulated Marjoram extract by spray drying. Journal of Food Research, 28(4), 15-30. [In Persian]
[18] Shahidi, M., Molaveasi, M. (2020). Microencapsulation of cardamom essential oil with gum arabic, maltodextrin and inulin and the investigation of their physical-chemical properties. Innovative Food Technologies, 7(3), 433-446. [In Persian]
[19] Nikjoo R, Peighambardoust S H, Olad Ghaffari A. (2021). Investigating some physical and functional properties of peppermint powder encapsulated by spray drying: effect of different storage conditions on phenolic compounds and antioxidant activity of the obtained powder. Food Science and Technology, 18 (111), 55-66. [In Persian]
[20] Malekizadeh, N., Peighambardoust, S. H., Oladghaffari, A., & Sarabandi, K. (2018). Effects of different concentrations of maltodextrin and drying temperatures of spray drying process on physicochemical properties of encapsulated Sumac extract. Iranian Journal Food Science and Technology Research, 14(2), 321-334. [In Persian]
[21] Zomorodi, Sh., Azarpazhooh, E.,Sharaie, P. (2020). The effect of ultrasound and microencapsulation on characteristics of bioactive compounds of extracted from grape pomace Rashe Sardasht cultivar. Food Engineering Research, doi:10.22092/fooder.2020.126933.1229 [In Persian]
[22] Jamdar, F., Mortazavi, S., saidi asl, M., Sharifi, A. (2020). Physicochemical and Antioxidant Properties of Ultrafiltrated White Cheese fortified with Microencapsulated of Wheat Germ Extract by Spray and Freeze Dryers. Research and Innovation in Food Science and Technology, doi:10.22101/jrifst.2020.218931.1159 [In Persian]
[23] Shokrolahi yancheshmeh B, Hesarinejad, M.A., Rezaei N, Salimi A, Shemshadi G, Kazemzadeh M, Jebeli Javan A. (2019). Optimization of extraction conditions of antioxidant and polyphenolic compounds of Ferula Persica extract by using response surface methodology. Food Science and Technology, 15 (85), 151-164. [In Persian]
[24] Tonon, R.V., Brabet, C. Hubinger, M.D. (2008). Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88: 411-418.
[25] Institute of Standards and Industrial Research of Iran, Isiri number: 2705. Determination of moisture content of Cereals and Cereal Products. [In Persian]
[25] Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of food engineering, 111(1), 135-148.
[26] Goula, A. M., & Adamopoulos, K. G. (2004). Influence of spray drying conditions on residue accumulation—Simulation using CFD. Drying Technology, 22(5), 1107-1128.
[27] Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Drying technology, 26(6), 714-725.
[28] Khalafi, R., Goli, S. A. H., & Behjatian, M. (2016). Characterization and classification of several monofloral Iranian honeys based on physicochemical properties and antioxidant activity. International journal of food properties, 19(5), 1065-1079.
[29] Sharifi, F. & Poorakbar, L. (2015). The survey of antioxidant properties of phenolic compounds in fresh and dry hybrid Barberry fruits (Berberis integerrima× vulgaris). Cumhuriyet University Faculty of Science Science Journal, 36(3), 1609-1617.
[30] Yasamani Farimani, T., Hesarinejad, M., Tat, M. (2020). A new study on the quality, physical and sensory characteristics of cupcakes with Althaea officinalis mucilage. Iranian Food Science and Technology Research Journal, 16(3), 25-35. [In Persian]
[31] Quek, S.Y., Chok, N.K., Swedland, P., (2007). The physicochemical properties of spray dried watermelon powders. Chemical Engineering and Processing, 46 (5): 386–392.
[32] Papadakis, S.E., Gardeli, C., Tzia, C., (2006). Sprays drying of raisin juice concentrate. Drying Technology, 24: 173-180.
[33] Adhikari, B., Howes, T., Bhandari, B.R., Troung, V. (2004). Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: experiments and modelling. Journal of Food Engineering, 62: 53–68.
[34] Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., Omid, M., (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90: 667- 675.
[35] Zendeboodi, F., Yeganehzad, S., Sadeghian, A.R. (2018). Production of carbohydrate-protein based soft drink powder containing date syrup by spray dryer: evaluation effect of drying carriers on physical properties of the powdered drink. Journal of Food Science and Technology, 15 (78), 43-54. [In Persian]
[36] Nikjoo, R., Olad Ghaffari, A., & Peighambardoust, S. H. (2019). Effect of spray drying on physicochemical characteristics and quality of peppermint powder. Food Science and Technology, 16(95), 99-109. [In Persian]
[37] Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392.
[38] Abadio, F. D. B., Domingues, A. M., Borges, S. V., & Oliveira, V. M. (2004). Physical properties of powdered pineapple (Ananas comosus) juice––effect of malt dextrin concentration and atomization speed. Journal of Food Engineering, 64(3), 285-287.
[39] Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2008). Nutritional and rheological characterization of spray dried sweetpotato powder. LWT-Food Science and Technology, 41(2), 206-216.
[40] Tuyen, C. K., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of food engineering, 98(3), 385-392.
[41] Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252-258.
[42] Sarabandi, K., & Peighambardoust, S. H. (2015). Effect of some production parameters and storage time on the flowability characteristics of spray-dried malt extract powder. Iranian Journal of Nutrition Sciences & Food Technology, 10(1), 51-60. [In Persian]
[43] Sarabandi, Kh., Sadeghi Mahoonak, A.R., Mohammadi, M., Akbarbagloo, Z. (2018). Effect of spray drying process on physicochemical and microstructure properties of malt extract powder. Innovation in food science and technology, 10 (2), 1-12. [In Persian]
[44] Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420-428.
[45] Goula, A. M., & Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11(2), 342-351.
[46] Shahidi, F., Varidi, M., Mohebbi, M., Noshad, M., Noshad, M. (2014). Optimization of spray drying of pomegranate juice using response surface methodology. Research and Innovation in Food Science and Technology, 3(2), 129-142. [In Persian]
[47] Chopda C.A. & Barrett D.M., (2001). Optimization of guava juice and powder production. Journal of Food processing and Preservation, 25(6), 411-430.
[48] Rodríguez-Hernández, G. R., González-García, R., Grajales-Lagunes, A., Ruiz-Cabrera*, M. A., & Abud-Archila, M. (2005). Spray-drying of cactus pear juice (Opuntia streptacantha): effect on the physicochemical properties of powder and reconstituted product. Drying Technology, 23(4), 955-973.
[49] Peighambardoust, S.H., Sarabandi, Kh. (2017). Effect of spray drying conditions on physicochemical, functional properties and production yield of malt extract powder. Journal of Food Research, 27 (2), 75-90. [In Persian]