[1] Murray, K., Wu, F., Shi, J., Jun Xue, S., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions.
Food Qual Saf., 1(4), 289–301. DOI:
10.1093/fqsafe/fyx027
[2] Rashida, H., Sean, B., Douglas, N., Carlota, M., Alida, S., Jessica, L, Rotstein, D., Schlater, L., Freiman, J., Douris, A., Simmons, M., Donovan, D., Henderson, J., Tewell, M., Snyder, K., Oni, O., Von Stein, D., Dassie, K. . . . Gieraltowski, L. (2019). Multistate outbreak of
Salmonella infections linked to raw Turkey products- United States, 2017–2019.
MMWR., 68(46), 1045–1049. DOI:
10.15585/mmwr.mm6846a1
[3] Yu, H., Elbediwi, M., Zhou, X., Shuai, H., Lou, X., Wang, H., Li, Y., & Yue, M. (2020). Epidemiological and genomic characterization of Campylobacter jejuni isolates from a foodborne outbreak at Hangzhou, China. Int J Mol Sci., 21(8), 3001. DOI: 10.3390/ijms21083001.
[4] Bensid A., El Abed N., ꓼ Houicher A., M. Regenstein J., Özogul F. (2020). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food – a review.
Crit Rev Food Sci Nutr., 62, 2985-3001.
DOI:10.1080/10408398.2020.1862046
[5] Van Loo, E. J., Ricke S. C., O’Bryan C. A., Johnson M. G. (2012). Historical and current perspectives in organic meat production. Org. Meat Prod. Process., 1–9. New York, NY: Wiley Scientific/IFT. DOI:
10.1002/9781118229088.ch1
[6] Ricke, S. C., Wideman M. E. (2013). Cranberries and their potential application against foodborne pathogens.
OA Alternative Medicine, 1(2),17. DOI:
10.13172/2052-7845-1-2-714
[7] Corbo, M. R., Bevilacqua, A., Campaniello, D., et al. (2009). Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches–a review.
IJFST., 44, 223–241. DOI:
10.1111/j.1365-2621.2008.01883.x
[8] Del Nobile, M. A., Lucera, A., Costa, C., et al. (2012). Food applications of natural antimicrobial compounds.
Front microbiol., 3, 287. DOI:
10.3389/fmicb.2012.00287
[9] Moye, Z. D., Woolston, J., Sulakvelidze, A. (2018). Bacteriophage applications for food production and processing.
Viruses, 10(4), 205. DOI:
10.3390/v10040205
[11] Sillankorva, S. M., Oliveira, H., Azeredo, J. (2012). Bacteriophages and their role in food safety.
Int J Microbiol., 2012, 1–13. DOI:
10.1155/2012/863945
[12] Bhardwaj, N., Bhardwaj, S. K., Deep, A., Dahiya, S., Kapoor, S. (2015). Lytic bacteriophages as biocontrol agents of foodborne pathogens.
AJAVA., 10(11), 708–723. DOI:
10.3923/ajava.2015.708.723
[13] O’Sullivan, L., Bolton, D., McAuliffe, O., Coffey, A. (2019). Bacteriophages in food applications: From foe to friend.
Annu Rev Food Sci Technol., 10(1), 151–172. DOI:
10.1146/annurev-food-032818-121747
[15] Sarno, D Pezzutto, Rossi M, Liebana E, Rizzi V. (2021). A Review of Significant European Foodborne Outbreaks in the Last Decade.
JFP., 84(12).
DOI:10.4315/JFP-21-096
[16] Scallan, E. Hoekstra, RM. Angulo, FJ. Tauxe, RV. Widdowson, MA. Roy, SL. Jones, JJ. Griffin, PM. (2011). Foodborne Illness Acquired in the United States—Major Pathogens.
Emerg. Infect. Dis.,17(1),7-15. DOI:
10.3201/EID1701.P11101
[17] Żaczek, B. Weber-Dąbrowska, A. Górski, (2015) Phages in the global fruit and vegetable industry.
J Appl Microbiol, 118, 3. DOI:
10.1111/jam.12700
[18] Islam, F., Saeed, F., Afzaal, M., Ahmad, A., Hussain, M., Khalid, M. A., Saewan, S. A., & Khashroum, A. O. (2022). Applications of green technologies-based approaches for food safety enhancement: A comprehensive review.
Food Sci Nutr., 10(9), 2855–2867. DOI:
10.1002/fsn3.2915
[19] Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Post harvest treatments of fresh produce.
Philos Trans R Soc A., 372 (2017). DOI:
10.1098/RSTA.2013.0309
[20] McCallin, S., Sarker, S. A., Barretto, C., Sultana, S., Berger, B., Huq, S., Krause, L., Bibiloni, R., Schmitt, B., Reuteler, G., & Reuteler, G. (2013). Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects.
Virol J., 443(2),187–196. DOI:
10.1016/j.virol.2013.05.022
[21] Wagh, R., Ruchir Priyadarshi, V., Jong-Whan, R. (2023). Novel Bacteriophage-Based Food Packaging: An Innovative Food Safety Approach.
Coatings, 13, 609. DOI:
10.3390/coatings13030609
[22] Kamiński, B., & Paczesny, J. (2024). Bacteriophage challenges in industrial processes: A historical unveiling and future outlook.
Pathog., 13(2), 152. DOI:
10.3390/pathogens13020152
[23] Kochhar, R. (2020). The virus in the rivers: Histories and antibiotic afterlives of the bacteriophage at the Sangam in Allahabad.
Notes Rec. R. Soc. J. Hist. Sci., 74, 625–651. DOI:
10.1098/rsnr.2020.0019
[24] Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial nanomaterials for food packaging.
Antibiotics (
Basel) [
Abbrev.: Antibiotics (Basel)], 11(5), 729.
DOI:10.3390/antibiotics11060729
[25] Gordillo Altamirano, F.L., Barr, J.J. (2019). Phage therapy in the postantibiotic era.
Clin. Microbiol. Rev., 32, e00066-18. DOI:
10.1128/CMR.00066-18
[26] Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR?
Med. Sci., 9(1), 14. DOI:
10.3390/medsci9010014
[27] Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. (2021).
The future of phage biocontrol in integrated plant protection for sustainable crop production.
Curr. Opin. Biotechnol.,
68, 60–71.
DOI:10.1016/j.copbio.2020.08.016
[28] Azam, A. H., Tan, X.-E., Veeranarayanan, S., Kiga, K., & Cui, L. (2021). Bacteriophage technology and modern medicine.
Antibiot. DOI:
10.3390/antibiotics10080999
[29] Zolnikov, T.R. (2019). Global health in action against a superbug.
Am. J. Public Health, 109, 523–524. DOI:
10.2105/AJPH.2019.304980
[30] Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing.
Appl. Sci., 12(5).
DOI: 10.3390/app12042202
[31] Jagtap, N.S., Wagh, R.V., Chatli, M.K., Malav, O.P., Kumar, P., Mehta, N. (2020). Chevon meat storage stability infused with response surface methodology optimized
origanum vulgare leaf extracts.
Agric. Res.,
9, 663–674. DOI:
10.1007/s40003-020-00464-5
[32] Hameed, F., Bandral, J. D., Gupta, N., Nayik, G. A., Sood, M., & Rahman, R. (2022). Use of bacteriophages as a target specific therapy against food-borne pathogens in food industry – a review: Bacteriophage.
J. Microbiol. Biotechnol. Food Sci., 11(6), e2949. DOI:
10.15414/jmbfs.2949
[33] Agriopoulou, S; Stamatelopoulou, E; Sachadyn-Król, M.; Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: quality and safety aspects.
Mdpi., 8, 952.
DOI: 10.3390/microorganisms8060952
[34] Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. (2019). Non-thermal technologies and its current and future application in the food industry.
IJFST., 54, 1–13. DOI:
10.1111/ijfs.13903
[35] Gientka, I.; Wójcicki, M.; ˙Zuwalski, A.W.; Bła ˙zejak, S. (2021). Use of phage cocktail for improving the overall microbiological quality of sprouts—Two methods of application.
Appl Microbiol., 1, 289–303. DOI:
10.3390/applmicrobiol1020021
[36] Leverentz, B., W. S. Conway, M. J. Camp, W. J. Janisiewicz, A. Abuladze, M. Yang, R. Saftner, and A. Sulakvelidze. (2003). Biocontrol of
Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin.
Appl Environ Microbiol., 69, 4519–4526. DOI:
10.1128/AEM.69.8.4519-4526.2003
[37] Leverentz, B., W. S. Conway, W. Janisiewicz, and M. J. Camp. (2004). Optimizing concentration and timing of a phage spray application to reduce
Listeria monocytogenes on honeydew melon tissue.
J Food Prot., 67, 1682– 1686. DOI:
10.4315/0362-028x-67.8.1682
[38] Aprea, G.; Zocchi, L.; Di Fabio, M.; De Santis, S.; Prencipe, V.A.; Migliorati, G. (2018) The applications of bacteriophages and their lysins as biocontrol agents against the foodborne pathogens
Listeria monocytogenes and Campylobacter spp.: An updated look.
Vet Ital., 54, 293–303. DOI:
10.12834/VetIt.311.1215.2
[39] Soni, K.A., Nannapaneni, R., Hagens, S. (2010). Reduction of
listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100.
Foodborne Pathog Dis., 7(4), 427–434. DOI:
10.1089/fpd.2009.0432
[40] Guenther S, Huwyler D, Richard S, Loessner MJ. (2009). Virulent bacteriophage for efficient biocontrol of
Listeria monocytogenes in ready‑to‑eat foods.
Appl Environ Microbiol., 75,93–100. DOI:
10.1128/AEM.01711-08
[41] Zhou, C., Zhu, M., Wang, Y., Yang, Z., Ye, M., Wu, L., Bao, H., Pang, M., Zhou, Y., Wang, R., Sun, L., Wang, H., Zheng, C., & Zhang, H. (2020). Broad host range phage vB-LmoM-SH3-3 reduces the risk of
Listeria contamination in two types of ready-to-eat food.
Food Control., 108, 106830.
DOI: 10.1016/j.foodcont.2019.106830
[42] Figueiredo, A.C.L.; Almeida, R.C.C. (2017). Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against
Listeria monocytogenes in ready-to-eat sliced pork ham.
Braz J Microbiol., 48, 724–729. DOI:
10.1016/j.bjm.2017.02.010
[43] Duc, H. M., Son, H. M., Yi, H. P. S., Sato, J., Ngan, P. H., Masuda, Y. Honjoh, K.-I., & Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and
Escherichia coli O157: H7 in different food matrices.
Int. Food Res., 131, 108977. DOI:
10.1016/j.foodres.2020.108977
[44] Kim, J., H., Jung, S. J., Mizan, M. F. R., Park, S. H., & Ha, S. (2020). Characterization of Salmonella spp. specific bacteriophages and their biocontrol application in chicken breast meat.
J Food Sci., 85(3), 526–534.
DOI: 10.1111/1750-3841.15042
[45] Shebs-Maurine, E. L., Giotto, F. M., Laidler, S. T., & de Mello, A. S. (2021). Effects of bacteriophages and peroxyacetic acid applications on beef contaminated with Salmonella during different grinding stages.
Meat Sci., 173, 108407.
DOI: 10.1016/j.meatsci.2020.108407
[46] Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S, El-Shibiny A, (2021). Isolation and chaaracterization of bacteriophage zcse6 against
salmonella spp: Phage application in milk.
Biologics, 1,164–176. DOI:
10.3390/biologics1020010
[47] Zhang, X., Niu, Y. D., Nan, Y., Stanford, K., Holley, R., McAllister, T., & Narváez-Bravo, C. (2019). SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds.
Int. J Food Microbiol., 305, 108250.
DOI:10.1016/j.ijfoodmicro.2019.108250
[48] Sharma, C., Dhakal, J., Nannapaneni, R. (2015). Efficacy of lytic bacteriophage preparation in reducing
Salmonella in vitro, on turkey breast cutlets, and on ground Turkey.
JFP., 78(7), 1357–1362. DOI:
10.4315/0362-028X.JFP-14-585
[49] Wong, C. W., Delaquis, P., Goodridge, L., Lévesque, R. C., Fong, K., & Wang, S. (2020). Inactivation of
Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail.
CRFS., 2, 25–32.
DOI:10.1016/j.crfs.2019.11.004
[50] Gencay, Y. E., Ayaz, N. D., Copuroglu, G., & Erol, I. (2016). Biocontrol of Shiga toxigenic
Escherichia coli O157: H7 in Turkish raw meatball by bacteriophage.
J. Food Saf., 36(1), 120–131. DOI:
10.1111/jfs.12219
[51] Carter, C. D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A. M., & Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces
Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination.
Bacteriophage, 2(3), 178–185. DOI:
10.4161/bact.22825
[52] Ding, Y., Nan, Y., Qiu, Y., Niu, D., Stanford, K., Holley, R., Narváez-Bravo, C., & McAllister, T. (2023). Use of a phage cocktail to reduce the numbers of seven
Escherichia coli strains belonging to different STEC serogroups applied to fresh produce and seeds.
J. Food Saf., 43(4), e13044. DOI:
10.1111/jfs.13044
[53] Duc, H. M., Son, H. M., Ngan, P. H., Sato, J., Masuda, Y., Honjoh, K.-i., & Miyamoto, T. (2020). Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of
Staphylococcus aureus.
Appl Microbiol Biotechnol., 104(11), 5145–5158. DOI:
10.1007/s00253-020-10581-4
[54] Orquera, S., Gölz, G., Hertwig, S., Hammerl, J., Sparborth, D., Joldic, A., & Alter, T. (2012). Control of Campylobacter spp. And
Yersinia enterocolitica by virulent bacteriophages.
IJBR., 6(1), 273. DOI:
10.4172/1747-0862.1000049
[55] Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., et al. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products.
Trends Food Sci Technol., 98, 10–24.
DOI: 10.1016/j.tifs.2020.01.032
[56] Liu, S., Quek, S.-Y., & Huang, K. (2024). Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems.
npj Science of Food, 7, 12574–12598. DOI:
10.1080/10408398.2023.2254837
[57] Torres-Acosta, M. A., Clavijo, V., Vaglio, C., González-Barrios, A. F., Vives-Flórez, M. J., & Rito-Palomares, M. (2019). Economic evaluation of the development of a phage therapy product for the control of
Salmonella in poultry.
Biotechnol. Prog.,
35(5), e2852. DOI:
10.1002/btpr.2852
[58] Liu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M., Ning, Y., Liu, S., Li, C., Liu, Y., et al. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards
Salmonella Enteritidis and its biocontrol potential on lettuce and tofu.
LWT, 118, 108791. DOI:
10.1016/j.lwt.2019.108791
[59] Clavijo, V., Baquero, D., Hernandez, S., Farfan, J. C., Arias, J., Arévalo, A., Donado-Godoy, P., & Vives-Flores, M. (2019). Phage cocktail SalmoFREE® reduces
Salmonella on a commercial broiler farm.
Poult. Sci.,
98(10), 5054–5063. DOI:
10.3382/ps/pez251
[60] Pecetta, S., & Rappuoli, R. (2021). Bacteriophages, a multi-tool to fight infectious disease. Med, 2(2), 209–210. Doi: 10.1016/j.medj.2021.01.007
[61] i, J., Zhao, F., Zhan, W., Li, Z., Zou, L., & Zhao, Q. (2022). Challenges for the application of bacteriophages as effective antibacterial agents in the food industry.
J. Sci. Food Agric.,
102(2), 461–471. DOI:
10.1002/jsfa.11505
[62] Esmael, A., Azab, E., Gobouri, A. A., Nasr-Eldin, M. A., Moustafa, M. M. A., Mohamed, S. A., Badr, O. A. M., & Abdelatty, A. M. (2021). Isolation and characterization of two lytic bacteriophages infecting a multi-drug resistant
Salmonella Typhimurium and their efficacy to combat salmonellosis in ready-to-use foods.
Microorganisms,
9(2), 423. DOI:
10.3390/microorganisms9020423
[63] Prashantha, S. T., Yadav, J., Sunilkumar, V. P., & HP, N. P. (2023). The variability and mechanisms of infection by gram-positive, plant associated bacteria. Int. Year Millet, 51.
[64] Komora, N., Maciel, C., Amaral, R. A., Fernandes, R., Castro, S. M., Saraiva, J. A., & Teixeira, P. (2021). Innovative hurdle system towards
Listeria monocytogenes inactivation in a fermented meat sausage model - high pressure processing assisted by bacteriophage P100 and bacteriocinogenic
Pediococcus acidilactici.
Food Res. Int., 148, 110628.
DOI:10.1016/j.foodres.2021.110628
[65] Srivastava, K. R., Awasthi, S., Mishra, P. K., & Srivastava, P. K. (2020). In M. N. V. Prasad & A. Grobelak (Eds.), Waterborne pathogens (pp. 237–277). Banaras Hindu University.
[66] Kuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry.
Biol. Control, 165, 104817.
DOI: 10.1016/j.biocontrol.2021.104817
[67] Paczesny, J., Wdowiak, M., & Ochirbat, E. (2022). In Nanotechnology for infectious diseases (pp. 439–473). Springer
[68]
Aliakbar Ahovan, Z.,
Hashemi, LM De Plan, A.,
Gholipourmalekabadi, M., Seifalian, A. (2020). Bacteriophage based biosensors: Trends, outcomes and challenges. Nanomaterials,
10(3), 501. DOI:
10.3390/nano10030501
[69] Wang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of
Escherichia coli in foods.
Curr. Opin. Food Sci., 39, 43–50.
DOI: 10.1016/j.cofs.2020.12.015
[70] Lai, W. C. B., Chen, X., Ho, M. K. Y., Xia, J., & Leung, S. S. Y. (2020). Bacteriophage-derived endolysins to target gram-negative bacteria.
Int. J. Pharm., 589, 119833. DOI:
10.1016/j.ijpharm.2020.119833
[71] Huang, Z., Zhang, C., Wang, J., Zhang, F., & Xu, X. (2021). Phages and their lysins: Toolkits in the battle against foodborne pathogens in the post-antibiotic era.
Compr. Rev. Food Sci. Food Saf., 20(4), 3319–3343. DOI:
10.1111/1541-4337.12757
[72] Ranveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. npj Science of Food, 8(1), 1. Doi: 10.1038/s41538-023-00245-8
[73] Islam, M. S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X., & Li, J. (2019). Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses, 11(9), 841. DOI:
10.3390/v11090841
[74] Cristobal-Cueto, P., García-Quintanilla, A., Esteban, J., García-Quintanilla, M. (2021). Phages in Food Industry Biocontrol and Bioremediation. Antibiotics,
10(7), 786. DOI:
10.3390/antibiotics10070786
[75] Fernández, L., Duarte, A. C., Rodríguez, A., & García, P. (2021). The relationship between the phageome and human health: Are bacteriophages beneficial or harmful microbes?
Benef. Microbes, 12(2), 107–120. DOI:
10.3920/BM2020.0132
[76] Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: Treatment of human infections.
urr. Pharm. Biotechnol, 11(1), 69–86. DOI:
10.2174/138920110790725401
[77] Strathdee, S. A., Hatfull, G. F., Mutalik, V. K., & Schooley, R. T. (2023). Phage therapy: From biological mechanisms to future directions.
Cell, 186(1), 17–31. DOI:
10.1016/j.cell.2022.11.017
[78] Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections.
Front. Pharmacol., 10, 513. DOI:
10.3389/fphar.2019.00513
[79] Żaczek, M., et al. (2022). A thorough synthesis of phage therapy unit activity in Poland—its history, milestones and international recognition.
Viruses,
14(6), 1170. DOI:
10.3390/v14061170
[80] Naureen, Z., et al. (2020). Comparison between American and European legislation in the therapeutical and alimentary bacteriophage usage. Acta Biomed., 91. DOI: 10.23750/abm.v91i13-S.10815
[81] Jones, J. D., Trippett, C., Suleman, M., Clokie, M. R., & Clark, J. R. (2023). The future of clinical phage therapy in the United Kingdom.
Viruses,
15(3), 721. DOI:
10.3390/v15030721
[82] Lin, R. C., Fabijan, A. P., Attwood, L., & Iredell, J. (2019). State of the regulatory affair: Regulation of phage therapy in Australia.
[83] Johri, P. (2023). Antimicrobial resistance and phage therapy in India. Microbiologist, Retrieved from.